6 research outputs found

    Detection of High Level of Co-Infection and the Emergence of Novel SARS CoV-2 Delta-Omicron and Omicron-Omicron Recombinants in the Epidemiological Surveillance of Andalusia

    Get PDF
    Recombination is an evolutionary strategy to quickly acquire new viral properties inherited from the parental lineages. The systematic survey of the SARS-CoV-2 genome sequences of the Andalusian genomic surveillance strategy has allowed the detection of an unexpectedly high number of co-infections, which constitute the ideal scenario for the emergence of new recombinants. Whole genome sequence of SARS-CoV-2 has been carried out as part of the genomic surveillance programme. Sample sources included the main hospitals in the Andalusia region. In addition to the increase of co-infections and known recombinants, three novel SARS-CoV-2 delta-omicron and omicron-omicron recombinant variants with two break points have been detected. Our observations document an epidemiological scenario in which co-infection and recombination are detected more frequently. Finally, we describe a family case in which co-infection is followed by the detection of a recombinant made from the two co-infecting variants. This increased number of recombinants raises the risk of emergence of recombinant variants with increased transmissibility and pathogenicity.This research was funded by Spanish Ministry of Science and Innovation (grant PID2020-117979RB-I00), the Instituto de Salud Carlos III (ISCIII), co-funded with European Regional Development Funds (ERDF) (grant IMP/00019), and has also been funded by Consejería de Salud y Familias, Junta de Andalucía (grants COVID-0012-2020, PS-2020-342 and IE19_259 FPS).Peer reviewe

    Analytical performance of the Alere™ i Influenza A&B assay for the rapid detection of influenza viruses.

    No full text
    The analytical performance of the new Alere™ i Influenza A&B kit (AL-Flu) assay, based on isothermal nucleic acids amplification, was evaluated and compared with an antigen detection method, SD Bioline Influenza Virus Antigen Test (SDB), and an automated real-time RT-PCR, Simplexa™ Flu A/B & VRS Direct assay (SPX), for detection of influenza viruses. An "in-house" RT-PCR was used as the reference method. Sensitivity of AL-Flu, SDB, and SPX was 71.7%, 34.8%, and 100%, respectively. Specificity was 100% for all techniques. The turnaround time was 13min for AL-Flu, 15min for SDB, and 75min for SPX. The Alere™ i Influenza A&B assay is an optimal point-of-care assay for influenza diagnosis in clinical emergency settings, and is more sensitive and specific than antigen detection methods

    Detection of High Level of Co-Infection and the Emergence of Novel SARS CoV-2 Delta-Omicron and Omicron-Omicron Recombinants in the Epidemiological Surveillance of Andalusia

    No full text
    Recombination is an evolutionary strategy to quickly acquire new viral properties inherited from the parental lineages. The systematic survey of the SARS-CoV-2 genome sequences of the Andalusian genomic surveillance strategy has allowed the detection of an unexpectedly high number of co-infections, which constitute the ideal scenario for the emergence of new recombinants. Whole genome sequence of SARS-CoV-2 has been carried out as part of the genomic surveillance programme. Sample sources included the main hospitals in the Andalusia region. In addition to the increase of co-infections and known recombinants, three novel SARS-CoV-2 delta-omicron and omicron-omicron recombinant variants with two break points have been detected. Our observations document an epidemiological scenario in which co-infection and recombination are detected more frequently. Finally, we describe a family case in which co-infection is followed by the detection of a recombinant made from the two co-infecting variants. This increased number of recombinants raises the risk of emergence of recombinant variants with increased transmissibility and pathogenicity

    Sample pooling for SARS-CoV-2 RT-PCR screening.

    No full text
    To evaluate the efficacy of sample pooling compared to the individual analysis for the diagnosis of coronavirus disease 2019 (COVID-19) by using different commercial platforms for nucleic acid extraction and amplification. A total of 3519 nasopharyngeal samples received at nine Spanish clinical microbiology laboratories were processed individually and in pools (342 pools of ten samples and 11 pools of nine samples) according to the existing methodology in place at each centre. We found that 253 pools (2519 samples) were negative and 99 pools (990 samples) were positive; with 241 positive samples (6.85%), our pooling strategy would have saved 2167 PCR tests. For 29 pools (made out of 290 samples), we found discordant results when compared to their correspondent individual samples, as follows: in 22 of 29 pools (28 samples), minor discordances were found; for seven pools (7 samples), we found major discordances. Sensitivity, specificity and positive and negative predictive values for pooling were 97.10% (95% confidence interval (CI), 94.11-98.82), 100%, 100% and 99.79% (95% CI, 99.56-99.90) respectively; accuracy was 99.80% (95% CI, 99.59-99.92), and the kappa concordant coefficient was 0.984. The dilution of samples in our pooling strategy resulted in a median loss of 2.87 (95% CI, 2.46-3.28) cycle threshold (Ct) for E gene, 3.36 (95% CI, 2.89-3.85) Ct for the RdRP gene and 2.99 (95% CI, 2.56-3.43) Ct for the N gene. We found a high efficiency of pooling strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA testing across different RNA extraction and amplification platforms, with excellent performance in terms of sensitivity, specificity and positive and negative predictive values
    corecore