139 research outputs found

    Competition between surface relaxation and ballistic deposition models in scale free networks

    Get PDF
    In this paper we study the scaling behavior of the fluctuations in the steady state WSW_S with the system size NN for a surface growth process given by the competition between the surface relaxation (SRM) and the Ballistic Deposition (BD) models on degree uncorrelated Scale Free networks (SF), characterized by a degree distribution P(k)∼k−λP(k)\sim k^{-\lambda}, where kk is the degree of a node. It is known that the fluctuations of the SRM model above the critical dimension (dc=2d_c=2) scales logarithmically with NN on euclidean lattices. However, Pastore y Piontti {\it et. al.} [A. L. Pastore y Piontti {\it et. al.}, Phys. Rev. E {\bf 76}, 046117 (2007)] found that the fluctuations of the SRM model in SF networks scale logarithmically with NN for λ<3\lambda <3 and as a constant for λ≥3\lambda \geq 3. In this letter we found that for a pure ballistic deposition model on SF networks WSW_S scales as a power law with an exponent that depends on λ\lambda. On the other hand when both processes are in competition, we find that there is a continuous crossover between a SRM behavior and a power law behavior due to the BD model that depends on the occurrence probability of each process and the system size. Interestingly, we find that a relaxation process contaminated by any small contribution of ballistic deposition will behave, for increasing system sizes, as a pure ballistic one. Our findings could be relevant when surface relaxation mechanisms are used to synchronize processes that evolve on top of complex networks.Comment: 8 pages, 6 figure

    Fluctuations of a surface relaxation model in interacting scale free networks

    Get PDF
    Isolated complex networks have been studied deeply in the last decades due to the fact that many real systems can be modeled using these types of structures. However, it is well known that the behavior of a system not only depends on itself, but usually also depends on the dynamics of other structures. For this reason, interacting complex networks and the processes developed on them have been the focus of study of many researches in the last years. One of the most studied subjects in this type of structures is the Synchronization problem, which is important in a wide variety of processes in real systems. In this manuscript we study the synchronization of two interacting scale-free networks, in which each node has keke dependency links with different nodes in the other network. We map the synchronization problem with an interface growth, by studying the fluctuations in the steady state of a scalar field defined in both networks. We find that as keke slightly increases from ke=0ke=0, there is a really significant decreasing in the fluctuations of the system. However, this considerable improvement takes place mainly for small values of keke, when the interaction between networks becomes stronger there is only a slight change in the fluctuations. We characterize how the dispersion of the scalar field depends on the internal degree, and we show that a combination between the decreasing of this dispersion and the integer nature of our growth model are the responsible for the behavior of the fluctuations with keke.Comment: 11 pages, 4 figures and 1 tabl

    Interacting social processes on interconnected networks

    Get PDF
    We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = -1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r∗(β), while a negative consensus happens for r ∗(β). In the r - β phase space, the system displays a transition at a critical threshold βc, from a coexistence of both orientations for β c to a dominance of one orientation for β > βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r∗, β∗).Facultad de Ciencias ExactasInstituto de Física de Líquidos y Sistemas Biológico

    Critical behavior of cascading failures in overloaded networks

    Full text link
    In recent years, research on spatial networks has become of widespread interest, with the focus on analyzing critical phenomena that can dramatically affect real systems via cascading failures and abrupt collapses. Here, we study the breakdown of a spatial network having a characteristic link-length due to overloads and the cascading failures that are triggered by failures of a fraction of links. While such breakdowns have been studied extensively, the critical exponents and the universality class of this phase transition have not been found. Here, we show indications that this transition has features and critical exponents which are the same as those of interdependent network systems, suggesting that both systems are in the same universality class. We find different abrupt transitions at the steady state, for different spatial embedding strength. For the weakly embedded systems (i.e., link-lengths of the order of the system size) we observe a mixed-order transition where the order parameter collapses with time in a long plateau shape. On the other hand, in strongly embedded systems (relatively short links), we find a pure first order transition which involves nucleation and growth of damage. System behavior in both limits is analogous to that observed in interdependent networks.Comment: 7 pages, 6 figure

    Interacting social processes on interconnected networks

    Get PDF
    We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = -1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r∗(β), while a negative consensus happens for r ∗(β). In the r - β phase space, the system displays a transition at a critical threshold βc, from a coexistence of both orientations for β c to a dominance of one orientation for β > βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r∗, β∗).Facultad de Ciencias ExactasInstituto de Física de Líquidos y Sistemas Biológico

    Cascading Failures in Complex Networks

    Full text link
    Cascading failure is a potentially devastating process that spreads on real-world complex networks and can impact the integrity of wide-ranging infrastructures, natural systems, and societal cohesiveness. One of the essential features that create complex network vulnerability to failure propagation is the dependency among their components, exposing entire systems to significant risks from destabilizing hazards such as human attacks, natural disasters or internal breakdowns. Developing realistic models for cascading failures as well as strategies to halt and mitigate the failure propagation can point to new approaches to restoring and strengthening real-world networks. In this review, we summarize recent progress on models developed based on physics and complex network science to understand the mechanisms, dynamics and overall impact of cascading failures. We present models for cascading failures in single networks and interdependent networks and explain how different dynamic propagation mechanisms can lead to an abrupt collapse and a rich dynamic behavior. Finally, we close the review with novel emerging strategies for containing cascades of failures and discuss open questions that remain to be addressed.Comment: This review has been accepted for publication in the Journal of Complex Networks Published by Oxford University Pres
    • …
    corecore