1,284 research outputs found
Modification of the Charge ordering in PrSrMnO Nanoparticles
Transport and magnetic properties have been studied in two sets of sol-gel
prepared PrSrMnO nanoparticles having average particle
size of 30 nm and 45 nm. Our measurements suggest that the formation of charge
ordered state is largely affected due to lowering of particle size, but the
ferromagnetic transition temperature () remains unaffected.Comment: Accepted in J. Appl. Phy
Error bounds and normalising constants for sequential monte carlo samplers in high dimensions
In this paper we develop a collection of results associated to the analysis of the sequential Monte Carlo (SMC) samplers algorithm, in the context of high-dimensional independent and identically distributed target probabilities. TheSMCsamplers algorithm can be designed to sample from a single probability distribution, using Monte Carlo to approximate expectations with respect to this law. Given a target density in d dimensions our results are concerned with d while the number of Monte Carlo samples, N, remains fixed. We deduce an explicit bound on the Monte-Carlo error for estimates derived using theSMCsampler and the exact asymptotic relative L2-error of the estimate of the normalising constant associated to the target. We also establish marginal propagation of chaos properties of the algorithm. These results are deduced when the cost of the algorithm is O(Nd2). © Applied Probability Trust 2014
Renormalization group approach of itinerant electron systems near the Lifshitz point
Using the renormalization approach proposed by Millis for the itinerant
electron systems we calculated the specific heat coefficient for
the magnetic fluctuations with susceptibility near the Lifshitz point. The constant value
obtained for and the logarithmic temperature dependence, specific
for the non-Fermi behavior, have been obtained in agreement with the
experimental dat.Comment: 6 pages, Revte
Nonequilibrium-induced metal-superconductor quantum phase transition in graphene
We study the effects of dissipation and time-independent nonequilibrium drive
on an open superconducting graphene. In particular, we investigate how
dissipation and nonequilibrium effects modify the semi-metal-BCS quantum phase
transition that occurs at half-filling in equilibrium graphene with attractive
interactions. Our system consists of a graphene sheet sandwiched by two
semi-infinite three-dimensional Fermi liquid reservoirs, which act both as a
particle pump/sink and a source of decoherence. A steady-state charge current
is established in the system by equilibrating the two reservoirs at different,
but constant, chemical potentials. The nonequilibrium BCS superconductivity in
graphene is formulated using the Keldysh path integral formalism, and we obtain
generalized gap and number density equations valid for both zero and finite
voltages. The behaviour of the gap is discussed as a function of both
attractive interaction strength and electron densities for various
graphene-reservoir couplings and voltages. We discuss how tracing out the
dissipative environment (with or without voltage) leads to decoherence of
Cooper pairs in the graphene sheet, hence to a general suppression of the gap
order parameter at all densities. For weak enough attractive interactions we
show that the gap vanishes even for electron densities away from half-filling,
and illustrate the possibility of a dissipation-induced metal-superconductor
quantum phase transition. We find that the application of small voltages does
not alter the essential features of the gap as compared to the case when the
system is subject to dissipation alone (i.e. zero voltage).Comment: 13 pages, 8 figure
Kondo effect in spin-orbit mesoscopic interferometers
We consider a flux-threaded Aharonov-Bohm ring with an embedded quantum dot
coupled to two normal leads. The local Rashba spin-orbit interaction acting on
the dot electrons leads to a spin-dependent phase factor in addition to the
Aharonov-Bohm phase caused by the external flux. Using the numerical
renormalization group method, we find a splitting of the Kondo resonance at the
Fermi level which can be compensated by an external magnetic field. To fully
understand the nature of this compensation effect, we perform a scaling
analysis and derive an expression for the effective magnetic field. The
analysis is based on a tight-binding model which leads to an effective Anderson
model with a spin-dependent density of states for the transformed lead states.
We find that the effective field originates from the combined effect of Rashba
interaction and magnetic flux and that it contains important corrections due to
electron-electron interactions. We show that the compensating field is an
oscillatory function of both the spin-orbit and the Aharonov-Bohm phases.
Moreover, the effective field never vanishes due to the particle-hole symmetry
breaking independently of the gate voltage.Comment: 9 pages, 5 figure
Enhanced critical current density of YBa2Cu3Ox films grown on Nd1/3Eu1/3Gd1/3Ba2Cu3Ox with nano-undulated surface morphology
We report a simple and easily controllable method where a nano-undulated
surface morphology of Nd1/3Eu1/3Gd1/3Ba2Cu3Ox (NEG) films leads to a
substantial increase in the critical current density in superconducting
YBa2Cu3Ox (YBCO) films deposited by pulsed laser deposition on such NEG layers.
The enhancement is observed over a wide range of fields and temperatures.
Transmission electron microscopy shows that such YBCO films possess a high
density of localized areas, typically 20 x 20 nm2 in size, where distortion of
atomic planes give rotational (2 to 5 degrees) moire patterns. Their
distribution is random and uniform, and expected to be the origin of the
enhanced flux pinning. Magneto-optical imaging shows that these films have
excellent macroscopic magnetic uniformity.Comment: 4 pages, 4 figure
Harnessing spin precession with dissipation
International audienceNon-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors
Thermodynamics of a trapped interacting Bose gas and the renormalization group
We apply perturbative renormalization group theory to the symmetric phase of
a dilute interacting Bose gas which is trapped in a three-dimensional harmonic
potential. Using Wilsonian energy-shell renormalization and the
epsilon-expansion, we derive the flow equations for the system. We relate these
equations to the flow for the homogeneous Bose gas. In the thermodynamic limit,
we apply our results to study the transition temperature as a function of the
scattering length. Our results compare well to previous studies of the problem.Comment: 14 pages, 5 figure
Electron-fluctuation interaction in a non-Fermi superconductor
We studied the influence of the amplitude fluctuations of a non-Fermi
superconductor on the energy spectrum of the 2D Anderson non-Fermi system. The
classical fluctuations give a temperature dependence in the pseudogap induced
in the fermionic excitations.Comment: revtex fil
Physics at a Neutrino Factory
In response to the growing interest in building a Neutrino Factory to produce
high intensity beams of electron- and muon-neutrinos and antineutrinos, in
October 1999 the Fermilab Directorate initiated two six-month studies. The
first study, organized by N. Holtkamp and D. Finley, was to investigate the
technical feasibility of an intense neutrino source based on a muon storage
ring. This design study has produced a report in which the basic conclusion is
that a Neutrino Factory is technically feasible, although it requires an
aggressive R&D program. The second study, which is the subject of this report,
was to explore the physics potential of a Neutrino Factory as a function of the
muon beam energy and intensity, and for oscillation physics, the potential as a
function of baseline.Comment: 133 pages, 64 figures. Report to the Fermilab Directorate. Available
from http://www.fnal.gov/projects/muon_collider/ This version fixes some
printing problem
- …
