1,284 research outputs found

    Modification of the Charge ordering in Pr1/2_{1/2}Sr1/2_{1/2}MnO3_{3} Nanoparticles

    Full text link
    Transport and magnetic properties have been studied in two sets of sol-gel prepared Pr1/2_{1/2}Sr1/2_{1/2}MnO3_{3} nanoparticles having average particle size of 30 nm and 45 nm. Our measurements suggest that the formation of charge ordered state is largely affected due to lowering of particle size, but the ferromagnetic transition temperature (TCT_{C}) remains unaffected.Comment: Accepted in J. Appl. Phy

    Error bounds and normalising constants for sequential monte carlo samplers in high dimensions

    Get PDF
    In this paper we develop a collection of results associated to the analysis of the sequential Monte Carlo (SMC) samplers algorithm, in the context of high-dimensional independent and identically distributed target probabilities. TheSMCsamplers algorithm can be designed to sample from a single probability distribution, using Monte Carlo to approximate expectations with respect to this law. Given a target density in d dimensions our results are concerned with d while the number of Monte Carlo samples, N, remains fixed. We deduce an explicit bound on the Monte-Carlo error for estimates derived using theSMCsampler and the exact asymptotic relative L2-error of the estimate of the normalising constant associated to the target. We also establish marginal propagation of chaos properties of the algorithm. These results are deduced when the cost of the algorithm is O(Nd2). © Applied Probability Trust 2014

    Renormalization group approach of itinerant electron systems near the Lifshitz point

    Full text link
    Using the renormalization approach proposed by Millis for the itinerant electron systems we calculated the specific heat coefficient γ(T)\gamma(T) for the magnetic fluctuations with susceptibility χ1δ+ωα+f(q)\chi^{-1}\sim |\delta+\omega|^\alpha+f(q) near the Lifshitz point. The constant value obtained for α=4/5\alpha=4/5 and the logarithmic temperature dependence, specific for the non-Fermi behavior, have been obtained in agreement with the experimental dat.Comment: 6 pages, Revte

    Nonequilibrium-induced metal-superconductor quantum phase transition in graphene

    Full text link
    We study the effects of dissipation and time-independent nonequilibrium drive on an open superconducting graphene. In particular, we investigate how dissipation and nonequilibrium effects modify the semi-metal-BCS quantum phase transition that occurs at half-filling in equilibrium graphene with attractive interactions. Our system consists of a graphene sheet sandwiched by two semi-infinite three-dimensional Fermi liquid reservoirs, which act both as a particle pump/sink and a source of decoherence. A steady-state charge current is established in the system by equilibrating the two reservoirs at different, but constant, chemical potentials. The nonequilibrium BCS superconductivity in graphene is formulated using the Keldysh path integral formalism, and we obtain generalized gap and number density equations valid for both zero and finite voltages. The behaviour of the gap is discussed as a function of both attractive interaction strength and electron densities for various graphene-reservoir couplings and voltages. We discuss how tracing out the dissipative environment (with or without voltage) leads to decoherence of Cooper pairs in the graphene sheet, hence to a general suppression of the gap order parameter at all densities. For weak enough attractive interactions we show that the gap vanishes even for electron densities away from half-filling, and illustrate the possibility of a dissipation-induced metal-superconductor quantum phase transition. We find that the application of small voltages does not alter the essential features of the gap as compared to the case when the system is subject to dissipation alone (i.e. zero voltage).Comment: 13 pages, 8 figure

    Kondo effect in spin-orbit mesoscopic interferometers

    Get PDF
    We consider a flux-threaded Aharonov-Bohm ring with an embedded quantum dot coupled to two normal leads. The local Rashba spin-orbit interaction acting on the dot electrons leads to a spin-dependent phase factor in addition to the Aharonov-Bohm phase caused by the external flux. Using the numerical renormalization group method, we find a splitting of the Kondo resonance at the Fermi level which can be compensated by an external magnetic field. To fully understand the nature of this compensation effect, we perform a scaling analysis and derive an expression for the effective magnetic field. The analysis is based on a tight-binding model which leads to an effective Anderson model with a spin-dependent density of states for the transformed lead states. We find that the effective field originates from the combined effect of Rashba interaction and magnetic flux and that it contains important corrections due to electron-electron interactions. We show that the compensating field is an oscillatory function of both the spin-orbit and the Aharonov-Bohm phases. Moreover, the effective field never vanishes due to the particle-hole symmetry breaking independently of the gate voltage.Comment: 9 pages, 5 figure

    Enhanced critical current density of YBa2Cu3Ox films grown on Nd1/3Eu1/3Gd1/3Ba2Cu3Ox with nano-undulated surface morphology

    Full text link
    We report a simple and easily controllable method where a nano-undulated surface morphology of Nd1/3Eu1/3Gd1/3Ba2Cu3Ox (NEG) films leads to a substantial increase in the critical current density in superconducting YBa2Cu3Ox (YBCO) films deposited by pulsed laser deposition on such NEG layers. The enhancement is observed over a wide range of fields and temperatures. Transmission electron microscopy shows that such YBCO films possess a high density of localized areas, typically 20 x 20 nm2 in size, where distortion of atomic planes give rotational (2 to 5 degrees) moire patterns. Their distribution is random and uniform, and expected to be the origin of the enhanced flux pinning. Magneto-optical imaging shows that these films have excellent macroscopic magnetic uniformity.Comment: 4 pages, 4 figure

    Harnessing spin precession with dissipation

    Get PDF
    International audienceNon-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors

    Thermodynamics of a trapped interacting Bose gas and the renormalization group

    Full text link
    We apply perturbative renormalization group theory to the symmetric phase of a dilute interacting Bose gas which is trapped in a three-dimensional harmonic potential. Using Wilsonian energy-shell renormalization and the epsilon-expansion, we derive the flow equations for the system. We relate these equations to the flow for the homogeneous Bose gas. In the thermodynamic limit, we apply our results to study the transition temperature as a function of the scattering length. Our results compare well to previous studies of the problem.Comment: 14 pages, 5 figure

    Electron-fluctuation interaction in a non-Fermi superconductor

    Full text link
    We studied the influence of the amplitude fluctuations of a non-Fermi superconductor on the energy spectrum of the 2D Anderson non-Fermi system. The classical fluctuations give a temperature dependence in the pseudogap induced in the fermionic excitations.Comment: revtex fil

    Physics at a Neutrino Factory

    Full text link
    In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon beam energy and intensity, and for oscillation physics, the potential as a function of baseline.Comment: 133 pages, 64 figures. Report to the Fermilab Directorate. Available from http://www.fnal.gov/projects/muon_collider/ This version fixes some printing problem
    corecore