71 research outputs found

    Transition of mesenchymal stem/stromal cells to endothelial cells

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cells remains controversial. Isolation and in vitro manipulation of MSCs before clinical application are important steps. High numbers of MSCs are needed, requiring the in vitro expansion of these clinically important cells. To this end, a well-controlled procedure for MSC isolation and maintenance in culture is necessary

    Protocol to analyze and validate transcriptomic changes in PDGFRβ-KO mesenchymal stem cell osteogenic potential in the mouse embryo

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) can differentiate into osteoblasts under appropriate conditions. PDGFRβ signaling controls MSC osteogenic potential both transcriptomically and in culture. Here, we present a “computer to the bench” protocol to analyze changes in MSC osteogenic potential at transcriptomic and cellular level in the absence of PDGFRβ. We detail the preparation of cells from mouse embryos, the analysis of transcriptomic changes from single-cell RNA-sequencing data, the procedure for MSC derivation and culture, and an osteogenic assay for functional validation. For complete details on the use and execution of this protocol, please refer to Sá da Bandeira et al. (2022).(1

    Estimation of Cardiovascular Risk by Framingham Score in a Cross-sectional Sample of Schizophrenia Inpatients

    Get PDF
    The lifespan of schizophrenia (SCZ) patients is considered 25 years shorter compared to the general population, primarily due to cardiovascular (CV) disease. This study aims to assess the CV profile of the SCZ inpatients from Psychiatry Clinic I and II of Cluj-Napoca between 2018-2019. Methods: The following indicators were documented from interview and laboratory data: arterial hypertension (AHT), smoking, dyslipidemia, obesity, metabolic syndrome (MS), medication adherence (MA), Framingham score (FS), and CV diagnosis (CVd). The sample was separated into two groups based on FS and CV diagnosis: high-risk/CVd and medium/low-risk. Results: 50 SCZ patients were included in the study. 58% had AHT and 10% were prediagnosed, 90% had lipids perturbations of which 26.7% were prediagnosed, 66 % met the criteria for MS from which one prediagnosis, 12% had a CVd and the average FS was 12.7% corresponding to intermediate risk category. MA subjects had a lower risk to be in the high risk/CVd group (OR=1/0.22, p=0.02) and no association was found for the gender-CV risk categories (p=0.08). Conclusion: 1. The known CV risk factors are underdiagnosed in SCZ patients 2. SCZ might attenuate the gender CV risk stratification; and 3. MA might decrease the CV risk in SCZ

    Electrochemical characterization of PVC-Pt(II) porphyrin-membrane

    Get PDF
    The maximum water volume fraction absorbed by membrane based on Pt(II)- 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) in poly(vinyl)chloride (PVC) matrix applied on iron substrate is 0.3 % and the permeability is 7.6×10−12 m 2 s −1 . After 24 h immersion in the 0.5 M 4-morpholinoethanesulfonic acid (MES) solution of pH = 5.5, the Nyquist representation of impedance data shows diffusion into the membrane of electrolytes from the buffer solution, causing a decrease of the membrane electric resistance, but no delamination was observed for immersion longer than 48 h. Furthermore, the coating resistance is still close to ~16000 ohm.cm−2 after 25 hours. This recommends this membrane as good material in potentiometric sensors design

    Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair

    Get PDF
    Mesenchymal stem cells (MSC) have been derived from different cultured human tissues, including bone marrow, adipose tissue, amniotic fluid and umbilical cord blood. Only recently it was suggested that MSC descended from perivascular cells, the latter being defined as CD146+ neuro-glial proteoglycan (NG)2+ platelet-derived growth factor-R\u3b2+ ALP+ CD34- CD45- von Willebrand factor (vWF)- CD144-. Herein we studied the properties of perivascular cells from a novel source, the foetal human umbilical cord (HUC) collected from pre-term newborns. By immunohistochemistry and flow cytometry we show that pre-term/foetal HUCs contain more perivascular cells than their full-term counterparts (2.5%versus 0.15%). Moreover, foetal HUC perivascular cells (HUCPC) express the embryonic cell markers specific embryonic antigen-4, Runx1 and Oct-4 and can be cultured over the long term. To further confirm the MSC identity of these cultured perivascular cells, we also showed their expression at different passages of antigens that typify MSC. The multilineage differentiative capacity of HUCPC into osteogenic, adipogenic and myogenic cell lineages was demonstrated in culture. In the perspective of a therapeutic application in chronic lung disease of pre-term newborns, we demonstrated the in vitro ability of HUCPC to migrate towards an alveolar type II cell line damaged with bleomycin, an anti-cancer agent with known pulmonary toxicity. The secretory profile exhibited by foetal HUCPC in the migration assay suggested a paracrine effect that could be exploited in various clinical conditions including lung disorders

    Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo

    Get PDF
    Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2 +Runx1 + perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2 + cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2 +Runx1 + cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo. </p

    HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Get PDF
    Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC) function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α), a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver), and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO) approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs) are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages

    Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering

    Get PDF
    For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
    corecore