5 research outputs found

    Using sedaDNA from North Sea sediment cores to reconstruct the early Holocene palaeoenvironment

    Get PDF
    Until ~7000-8000 years ago, much of the southern North Sea was a coastal plain now named Doggerland. Doggerland was inhabited by Mesolithic people and is expected to be a rich source of archaeological information. This thesis reconstructs environmental changes through time in a region of Doggerland using sedimentary ancient DNA (sedaDNA) from marine cores. Plant and animal DNA profiles are produced for individual samples using a novel, highly accurate sequence assignment method. These are used to infer environmental conditions and changes through each core. Patterns across cores are then examined. The validity of these results is evaluated by searching for age-associated DNA damage patterns and evidence that DNA has not moved vertically between sediment strata. Certain unexpected taxa that would be particularly informative for climate or human activity are investigated in greater depth where data allows. Finally, the authenticated results are drawn together and re-examined in the context of preliminary dating information from Europe’s Lost Frontiers colleagues. Overall, the cores appear to have captured environments through the inundation process. There are woodland and freshwater profiles; some are grass dominated and may represent reed beds; others combine seagrasses and small terrestrial signals to imply a brackish coastal environment. The project presents a detailed insight into an ancient submerged landscape, demonstrates the capability of emerging sedaDNA analysis methods, and provides a platform for further investigation of the relationship of sedaDNA to other environmental proxies

    PIA : more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North sea

    Get PDF
    Assigning metagenomic reads to taxa presents significant challenges. Existing approaches address some issues, but are mostly limited to metabarcoding or optimized for microbial data. We present PIA (Phylogenetic Intersection Analysis): a taxonomic binner that works from standard BLAST output while mitigating key effects of incomplete databases. Benchmarking against MEGAN using sedaDNA suggests that, while PIA is less sensitive, it can be more accurate. We use known sequences to estimate the accuracy of PIA at up to 96% when the real organism is not represented in the database. For ancient DNA, where taxa of interest are frequently over-represented domesticates or absent, poorly-known organisms, more accurate assignment is critical, even at the expense of sensitivity. PIA offers an approach to objectively filter out false positive hits without the need to manually remove taxa and so make presuppositions about past environments and their palaeoecologies

    MetaDamage tool: Examining post-mortem damage in sedaDNA on a metagenomic scale

    Get PDF
    The use of metagenomic datasets to support ancient sedimentary DNA (sedaDNA) for paleoecological reconstruction has been demonstrated to be a powerful tool to understand multi-organism responses to climatic shifts and events. Authentication remains integral to the ancient DNA discipline, and this extends to sedaDNA analysis. Furthermore, distinguishing authentic sedaDNA from contamination or modern material also allows for a better understanding of broader questions in sedaDNA research, such as formation processes, source and catchment, and post-depositional processes. Existing tools for the detection of damage signals are designed for single-taxon input, require a priori organism specification, and require a significant number of input sequences to establish a signal. It is therefore often difficult to identify an established cytosine deamination rate consistent with ancient DNA across a sediment sample. In this study, we present MetaDamage, a tool that examines cytosine deamination on a metagenomic (all organisms) scale for multiple previously undetermined taxa and can produce a damage profile based on a few hundred reads. We outline the development and testing of the MetaDamage tool using both authentic sedaDNA sequences and simulated data to demonstrate the resolution in which MetaDamage can identify deamination levels consistent with the presence of ancient DNA. The MetaDamage tool offers a method for the initial assessment of the presence of sedaDNA and a better understanding of key questions of preservation for paleoecological reconstruction

    Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir

    Get PDF
    Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual taxa and communities of both microbes and eukaryotes. AncientMetagenomeDir (archived at https://doi.org/10.5281/zenodo.3980833) is a collection of annotated metagenomic sample lists derived from published studies that provide basic, standardised metadata and accession numbers to allow rapid data retrieval from online repositories. These tables are community-curated and span multiple sub-disciplines to ensure adequate breadth and consensus in metadata definitions, as well as longevity of the database. Internal guidelines and automated checks facilitate compatibility with established sequence-read archives and term-ontologies, and ensure consistency and interoperability for future meta-analyses. This collection will also assist in standardising metadata reporting for future ancient metagenomic studies

    MetaDamage tool : examining post-mortem damage in sedaDNA on a metagenomic scale

    Get PDF
    The use of metagenomic datasets to support ancient sedimentary DNA (sedaDNA) for paleoecological reconstruction has been demonstrated to be a powerful tool to understand multi-organism responses to climatic shifts and events. Authentication remains integral to the ancient DNA discipline, and this extends to sedaDNA analysis. Furthermore, distinguishing authentic sedaDNA from contamination or modern material also allows for a better understanding of broader questions in sedaDNA research, such as formation processes, source and catchment, and post-depositional processes. Existing tools for the detection of damage signals are designed for single-taxon input, require a priori organism specification, and require a significant number of input sequences to establish a signal. It is therefore often difficult to identify an established cytosine deamination rate consistent with ancient DNA across a sediment sample. In this study, we present MetaDamage, a tool that examines cytosine deamination on a metagenomic (all organisms) scale for multiple previously undetermined taxa and can produce a damage profile based on a few hundred reads. We outline the development and testing of the MetaDamage tool using both authentic sedaDNA sequences and simulated data to demonstrate the resolution in which MetaDamage can identify deamination levels consistent with the presence of ancient DNA. The MetaDamage tool offers a method for the initial assessment of the presence of sedaDNA and a better understanding of key questions of preservation for paleoecological reconstruction
    corecore