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Assigning metagenomic reads to taxa presents significant challenges. Existing
approaches address some issues, but are mostly limited to metabarcoding or optimized
for microbial data. We present PIA (Phylogenetic Intersection Analysis): a taxonomic
binner that works from standard BLAST output while mitigating key effects of incomplete
databases. Benchmarking against MEGAN using sedaDNA suggests that, while PIA
is less sensitive, it can be more accurate. We use known sequences to estimate the
accuracy of PIA at up to 96% when the real organism is not represented in the database.
For ancient DNA, where taxa of interest are frequently over-represented domesticates
or absent, poorly-known organisms, more accurate assignment is critical, even at the
expense of sensitivity. PIA offers an approach to objectively filter out false positive hits
without the need to manually remove taxa and so make presuppositions about past
environments and their palaeoecologies.

Keywords: ancient DNA, BLAST, MEGAN, metagenomics, sedaDNA, taxonomic assignment

INTRODUCTION

Next-generation sequencing allows detailed metagenomic analysis of a wide range of ancient
samples. Studies have attempted to recreate biological communities from material including
coprolites (Bon et al., 2012; Appelt et al., 2014), dental calculus (Warinner et al., 2015; Weyrich et al.,
2017), ice cores (Willerslev et al., 2007), sediment (Birks and Birks Hilary, 2015; Smith et al., 2015),
stalagmites (Stahlschmidt et al., 2019), rodent middens (Kuch et al., 2002) and mollusc shells (Der
Sarkissian et al., 2016). Our understanding of contamination and best laboratory practice has made
good progress (Gilbert et al., 2005; Shapiro et al., 2019) and methods for authenticating ancient
DNA sequences are developing (Key et al., 2017; Renaud et al., 2019). However, identifying ancient
metagenomic sequences is still a challenge, particularly for shotgun data.

Shotgun sequencing has three key advantages over metabarcoding for ancient metagenomics.
First, it can capture information from anywhere in the genome, greatly increasing sensitivity.
Every DNA molecule extracted from a sample has the potential to be identified, provided that
reference databases are adequate. Second, read count and genome size could be used to calculate
biogenomic mass: a proxy of biomass (Gaffney et al., 2020). Third, metabarcoding is far less likely
to record DNA damage signals. Damage accumulates in DNA over time (Kistler et al., 2017), so
is important for authentication of ancient reads, and occurs most rapidly on the single-stranded
overhangs at the ends of molecules. A characteristic damage signal is C-T deamination; changes to
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the base sequence make it less likely that metabarcoding primers
will anneal, so damaged molecules are less likely to be sequenced.
Furthermore, primer regions are typically removed during
analysis, so even if the very ends of molecules are amplified,
they will not be considered. Shotgun sequencing can potentially
sequence whole molecules, especially when fragments are short,
as is the case for ancient DNA. This preserves any damage signal
intact. Overall, shotgun data has the potential to supply highly
sensitive and informative metagenomic data.

However, because sequences can come from anywhere in the
genome, accurately assigning shotgun reads to taxa requires a
much larger reference database than for metabarcoding. The
GenBank database is the most comprehensive (Benson et al.,
2016), but even this is highly incomplete. Only a tiny fraction of
organisms have had their full genomes sequenced and most are
not represented at all. Reads from unrepresented organisms may
go unassigned. Worse, the uneven representation of taxa that are
in a database can create two additional problems that may lead to
incorrect assignments.

The first problem is the over-representation of some taxa. This
was recently identified as an issue for BLAST (Zhang et al., 2000),
the “gold standard” of taxonomic binning (Herbig et al., 2016),
by Shah et al. (2018). When BLAST searches against a database, it
starts at the top and returns the first n hits that pass a quality filter,
not the best n hits. If an over-represented taxon is a reasonable
match, BLAST could return n hits and finish before it has a
chance to identify closer but less represented taxa further down
the database. Better matches may be missing from the list of hits.
Even if BLAST does check the whole database, the list of hits may
be disproportionately full of over-represented taxa. Taxonomic
assignment methods that consider this list may then assign with
too much weight to these taxa.

The second problem with an uneven database is “oasis” taxa in
“sparse” areas. Consider a sparsely-populated area of the database
with just one or a few taxa represented, not including the real
taxon (Figure 1B). A specific sequence is unlikely to hit anything
and will probably be left unassigned. But a conservative sequence
may hit that one or few taxa, not necessarily because they are
a good match, but because there is nothing else closer. The list
of BLAST hits for that read will not be empty, but will have
very low diversity. This can give the illusion of a confident
match. Taxonomic binners that use a phylogenetic intersection
or “lowest common ancestor” approach, robust to conservative
sequences, can produce false positives because of oasis taxa.

BLAST and BLAST-like algorithms have a minimum quality
filter that affects how similar a reference sequence must be
to count as a hit and how much empty space there must be
around a read for it to go unassigned (Figure 1, “hit radius”).
But as with many aspects of taxonomic assignment, this filter
has a trade-off between accuracy and sensitivity. A very strict
filter would increase the resistance of reads to not-very-similar
oases, but make them less attracted to more similar sequences
that could be informative. This is especially an issue for aDNA,
where even a read from an organism that is in the database
may not share an identical sequence because of DNA damage or
mutations over time. The minimum quality filter cannot protect
from oasis taxa alone.

One of the main arguments in favor of metabarcoding is its
use of confined, curated databases that aim to be functionally
complete for the study taxon in the study area, such as the Arctic
flora database in Sønstebø et al. (2010). Uneven representation is
limited if all taxa are represented to some degree. It is currently
realistic to sequence a barcode region of a several hundred
species for a study, as in Sønstebø et al. But because shotgun
sequencing can access the whole genome, a complete shotgun
database must have the full genome of all organisms, which will
not happen in the foreseeable future. Metabarcoding databases
are typically far more “complete” in that more of the study taxa
are represented. However, this still assumes that an environment
can even be well-studied enough for a complete list of taxa.
This is debatable, especially for ancient ecosystems. Despite
metabarcoding databases being easier to fill, arguably neither can
ever be truly complete. Metabarcoding does not fully address
uneven representation in databases. Both metabarcoding and
shotgun approaches would benefit from an alternative solution.

A method that accepts shotgun data while also improving
the database is SPARSE (Zhou et al., 2018). It rebuilds a given
database as hierarchical clusters of similar sequences. If a taxon is
represented by several very similar genomes, these genomes will
be combined into a single cluster. The final SPARSE database has
every present taxon represented by one genome, addressing the
problem of over-represented taxa. However, SPARSE is designed
for microbial data in relatively well-studied systems, where the
database is both relatively well-populated and small enough to be
rebuilt on a typical lab server. It does not address the problem
of oasis taxa in sparse areas, nor would it be easily applicable to
studies of organisms with larger genomes.

A popular standard tool for metagenomic studies not limited
to microbes is MEGAN (Huson et al., 2007, 2016). This analyses
output from various reference-matching programs, including
BLAST. Its sister program, MALT (Herbig et al., 2016), aims to
generate comparable output to BLAST at greatly increased speed
before assigning taxonomy in the same way as MEGAN. This
shared method is the LCA (Lowest Common Ancestor) algorithm
(Huson et al., 2016). The default naive LCA is best suited to
taxonomic binning. For each read, hits are first quality-filtered
against multiple criteria. Good hits are assumed to belong not to
the single organism they were sequenced from, but the “lowest
common ancestor” (ancestral node) of all associated taxa. Being
associated with multiple taxa suggests that the hit sequence is
conservative, so should be assigned to a higher taxon. The more
conserved the sequence, the more diverse the associated taxa,
so the higher the taxon to which the hit is assigned. Following
the same logic, the read is then assigned to the lowest common
ancestor of its list of processed hits.

The LCA is robust to overrepresented taxa in the list of hits.
The lowest common ancestor is calculated on presence/absence,
not number of occurrences. However, accurate assignment still
depends on the list containing accurate hits to begin with, which
overrepresented taxa can prevent (Shah et al., 2018).

The LCA also addresses unrepresented taxa: even if the real
taxon is not in the database, the list of hits should include
relatives, so the read should be assigned to an “ancestor” that
encompasses the real taxon. The more sparse the database,
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FIGURE 1 | Database landscape diagrams of an (A) well-populated and (B) sparsely-populated region. Column (1) is the state of the database region. (2) Shows a
BLAST search for a sequence from an unrepresented taxon; for a reference sequence to be a hit, it must be inside the hit radius. Column (3) is what phylogenetic
intersection or LCA (“lowest common ancestor”) those BLAST hits would produce: what the read would be assigned to. In a well-populated region (A), the more
conservative the sequence (or the wider the quality filter), the higher the taxon the read would be assigned to. The intersection should contain diverse relatives of the
real taxon, so is likely to contain the real taxon. In a sparsely-populated region (B), a specific sequence (or strict filter) is unlikely to be assigned. But a more
conservative sequence (or wider filter) may hit the one or few represented taxa in the region: oases. These are probably not close relatives of the real taxon. However,
the resulting low-diversity list of hits gives the intersection an illusion of confidence.

the more diverse the list of hits, so the higher the taxon the
read is assigned to. In very sparse regions, this means that
reads are likely to be under- or unassigned but not incorrectly
over-assigned (Huson et al., 2007). However, we argue that
the LCA approach may incorrectly assign these reads if they
are influenced by oasis taxa. If, for instance, a sparse region
were occupied by clumps of taxa rather than an even spread
of relatives around the unrepresented taxon (Figure 1B), the
list of hits may be dominated by one of those taxon clumps,
resulting in a relatively specific “ancestor” close to the oasis but
not necessarily the real taxon.

MEGAN does have a further check against false positives: the
min-support filter (Huson et al., 2007; Huson, 2019). Once all
reads have been assigned, resulting taxa are only reported if they
contain a minimum number of reads. If a read was assigned to
a taxon that does not meet this threshold, it is pushed up the
taxonomy until it reaches a taxon that does. This excludes very
rare taxa, which Huson et al. argue are more likely to be false

positives. However, we argue that oasis taxa could escape this
check. Being the only represented taxon in that database region,
an oasis could potentially pull in reads that would otherwise be
assigned to multiple local taxa. The fewer other taxa around, the
stronger the oasis effect, and the greater the number of reads
incorrectly assigned to that taxon. Oasis taxa can systematically
generate false positives that are not necessarily rare.

In this paper, we present Phylogenetic Intersection Analysis
(PIA) as a taxonomic binner which, like MEGAN, works from
gold-standard BLAST output and is not designed specifically
for microbial data, yet goes further to address the shortcomings
of BLAST and databases. It also filters BLAST hits by a strict
quality threshold. It also accounts for over-represented taxa
by only counting each hit taxon once. It also avoids over-
assigning conservative hits and sequences by finding a lowest
common ancestor, here called a phylogenetic intersection to
avoid ambiguity when dealing with ancient sequences that may
genuinely be ancestral. However, there are two key differences
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between MEGAN and PIA. First is a difference with finding the
intersection. MEGAN accepts an LCA calculated from just one
taxon (i.e., that taxon itself), but if PIA does not have at least two
taxa, it discards the read. It assumes that the real taxon is not in
the database, so will not assign directly to a taxon in the database.
It only assigns to a higher taxon, assuming that the real taxon
lies within that phylogenetic range. This avoids over-assigning
unrepresented reads to close relatives. Second is a diversity check
that measures the extent of population in the region of the
database. Reads assigned in sparse regions, vulnerable to the
influence of oasis taxa, are discarded. PIA discards the majority of
reads, but those that remain are robustly assigned. The resulting
assignations are reliable despite low read counts.

This study evaluates PIA by benchmarking its performance
against MEGAN with empirical and simulated data. The
empirical data was generated as part of the Europe’s Lost Frontiers
project. This aims to reconstruct submerged palaeolandscapes
around the United Kingdom, particularly Doggerland, which
now lies under the North Sea. One arm of the project
is multi-proxy analysis of sediment cores. This study uses
our sedaDNA data from core ELF039, chosen because most
samples had a relatively high data yield and the geological
context suggested a potentially interesting story. For more
information, see Gaffney et al. (2020).

ALGORITHM

A very early version of PIA was originally presented in Smith
et al. (2015). Although the central approach has not changed, it
has been substantially rewritten and refined. Scripts are available
from https://github.com/Allaby-lab/PIA.

The Input BLAST File
The two inputs for PIA are a FASTA of query sequences and a
corresponding BLAST file. The BLAST file must be in format
six (tabular) with all standard columns followed by an additional
column containing taxonomic IDs associated with the reference
sequence hit. This column is how PIA assigns hits to taxa. We also
use the “-max_target_seqs” parameter to limit the number of hits
returned per query sequence, recognizing that the hits returned
will be the first n to meet a quality threshold (Shah et al., 2018).
Although PIA aims to reduce the impact of overrepresented taxa
in databases once the BLAST is complete, it is important that
this BLAST takes enough hits to reach underrepresented taxa. “-
max_target_seqs” should be as high as practical. We suggest 500
as a default. Finally, note that BLAST can be run with x number of
threads. Many of our larger samples took days to BLAST despite
using several threads. This is by far the most computationally
expensive part of the pipeline.

A typical pre-PIA BLAST command:

blastn -db [nucleotide database] -num_threads [x] -query
[input FASTA] -out [output] -max_target_seqs 500 -outfmt
“6 std staxids”

The resulting BLAST file (Figure 2) lists hits first by query
sequence, so all hits to a query are together, and then by

descending Expect value (E), so better matches are generally
further up the list. However, within E value, the order is simply
the order in which the hits occur in the database.

PIA
The PIA algorithm itself is computationally light enough to be
run on a laptop with small sample files (FASTA ∼ <3 MB). The
index-building step required before first use should take no more
than a few minutes. Time to analyze the seven samples used
in this study on one thread ranged from approximately 10 s to
10 min. PIA can also be multi-threaded for larger samples, for
which we recommend a server.

Figure 3 illustrates the PIA algorithm. PIA considers one read
at a time. Reads with no BLAST hits are discarded. For reads with
hits, PIA first calculates the coverage of the top hit:

% coverage =
match length
read length

× 100

If the coverage does not meet a threshold (default 95%), the read
is discarded. The taxonomic assignment of the read is strongly
influenced by the top hit, so it only accepts a very close match.

PIA then considers each hit in order of the BLAST file. First,
the hit is assigned to a taxon. If a hit is associated with multiple
taxa, PIA assumes that this indicates a conservative sequence
and assigns the hit to the phylogenetic intersection of those taxa.
The assigned taxon is then evaluated. If there has already been
a hit to the taxon, the hit is discarded. Because hits are listed
in order of E value, this means that only the best hit for each
taxon is retained. This taxon check aims to mitigate the problem
of overrepresented taxa. Provided that the BLAST found enough
hits to reach underrepresented taxa in the database at all, this
check gives them equal weight to overrepresented taxa. Every
taxon is reduced to a single hit.

The second check performed on each hit is the E value. If there
has already been a hit that passed the taxon check with this E
value, those hits are grouped together. Once all hits for this read
have been taxon-checked and grouped by E value, the E value
groups are collapsed to a single “hit” per E value. This “hit” is
the phylogenetic intersection of the group members. If a read is
found to be equally similar to sequences from several different
organisms, PIA again assumes that this indicates a conservative
sequence. Finally, if these new “hits” are to previously seen taxa,
then as before, only the hit with the best E value is retained.

Once the list of BLAST hits for the read has been reduced
to one (best) hit per taxon, PIA assigns the read to the
phylogenetic intersection of the top and second-top hits. If only
one hit remains, there cannot be an intersection, so the read is
discarded. Finding the intersection firstly avoids over-assigning
conservative sequences. Secondly, it avoids over-assigning reads
from unrepresented taxa to represented relatives. PIA assumes
that the real taxon is not in the database, so it will not assign
directly to any organism in the database. The intersection is
only taken between the top two hits because, after the taxon
check and grouping by E value, those two hits may already be
to distantly-related and/or high taxa.
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FIGURE 2 | Example partial BLAST output structure in format “6 std staxids”. The standard (std) fields are the first columns, starting with query sequence (qseqid)
and ending with Expect (E) value (evalue) and score (bitscore). Additional fields, here the taxonomic IDs (staxids) associated with the reference, are at the end. Each
row is a hit between the query sequence and a reference sequence from the database. Hits are ordered first by query sequence, then by E value from lowest to
highest.

The final step is the diversity check, which filters reads by
taxonomic diversity score:

Taxonomic diversity score =
t − 1

c

Where t is the number of different taxa in the original list of
BLAST hits and c is a predefined cap on the number of hit taxa
to consider. The score measures how populated this area of the
database is. A well-populated region will have more hits. If the
region is sparsely-populated, there may be a disproportionately
high number of hits to oasis taxa. Reads which seem to match an
organism in a too sparsely-populated area are discarded.

METHODS

Analysis of Empirical sedaDNA Data
PIA and MEGAN were compared in a parallel analysis of seven
samples from the Europe’s Lost Frontiers project (Gaffney et al.,
2020). These samples are from sediment core ELF039 which
was taken from a palaeochannel approximately 50 km north
of the present Norfolk coast. No dates are available for that
core at the time of writing, but the channel is interpreted as a
river valley that underwent marine inundation during the early
Holocene. The samples were shotgun sequenced on a NextSeq
550 as part of our work using sedaDNA for palaeoenvironmental
reconstruction. We typically focus on plants because of their high
biomass in most environments, increasing the chance of DNA
deposition, and the abundance of ecological and distribution
information available. Accordingly, this study made use of reads
from Viridiplantae.

Raw FASTQ files were adapter-trimmed and collapsed in
AdapterRemoval 2.2.2 (Lindgreen, 2012), converted to FASTA,
and had duplicates removed using fastx_collapser from the FAST-
X Toolkit 0.0.13 (Gordon and Hannon, 2010). Then an initial
BLAST was performed against the full nucleotide GenBank
database (downloaded on 05-09-2019) using blastn 2.6.0 (Zhang
et al., 2000) with -outfmt “6 std staxids” and -num_alignments
10. Output format six is tabular, reducing file size, and reference
sequence taxonomic IDs were included to allow full parsing by
MEGAN. In format 6, -num_alignments states the maximum
number of hits per query. Ten was sufficient for this stage. An
RMA file was generated from that BLAST output using the
MEGAN5 command line interface with default settings (Huson
et al., 2016). Reads assigned to Viridiplantae or below were
extracted to a new FASTA. This FASTA was then BLASTed
more thoroughly, with -max_target_seqs set to 500 to give up to
approximately 500 hits per read.

For the MEGAN analysis, an RMA file was again generated
from this final BLAST output using the default settings. All nodes
were exported to a text file in the format “taxonID_to_count”.
The BLAST output and corresponding FASTA were also run
through PIA. A custom script1 (see Supplementary Material)
was then used to filter both sets of output by a negative control:
taxa with a control:sample hit ratio of at least 0.02 were discarded
from the sample data. The control is the sum of all negative
controls in the wider sequencing run of 142 samples from the
same project. The seven filtered sample files were concatenated
together and visualized with Krona (Ondov et al., 2011; see
Supplementary Material).

1https://github.com/Allaby-lab/PIA-accessories
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FIGURE 3 | Flowchart illustrating the PIA algorithm. There are three key
checks that may result in a read being discarded: sufficient coverage of the
top BLAST hit, at least two hits remaining after processing, and a high enough
taxonomic diversity score. Reads that pass are assigned to the intersection of
the top two remaining BLAST hits.

Accuracy Testing With Simulated Data
Benchmarking against MEGAN suggested that PIA may
successfully increase the accuracy of taxonomic assignations at

the cost of sensitivity. To test the accuracy more objectively,
we ran both MEGAN and PIA on two test datasets of known
GenBank sequences. For each dataset, the control condition used
the original BLAST database from the benchmarking analysis
(downloaded on 05-09-2019). An “exclusion” condition excluded
all taxa in the test dataset from the BLAST database. This aimed
to simulate the unrepresented taxa, common in metagenomic
data, that PIA is designed to analyze. In each condition, we
tracked the assignations of individual sequences and compared
them to the actual source organisms. Most stages involved
custom scripts available from https://github.com/Allaby-lab/
PIA-accessories and detailed in the Supplementary Material.

Each test dataset comprised 250 GenBank sequences
downloaded through the NCBI website. For the first dataset,
sequences were first filtered to Embryophyta and to a length of
30–150 bp to reflect typical aDNA. We then iterated through
“All other taxa” from the “Results by taxon” option until taxa
were represented by no more than 44 relevant sequences.
Metagenomic data is likely to contain poorly-represented
organisms. Single sequences from 245 taxa were downloaded
as a FASTA with GIs included. An additional five 30–150 bp
sequences were added from well-represented domesticates:
Hordeum vulgare, Musa acuminata, Triticum dicoccon, Triticum
aestivum, and Zea mays. These were run through BLASTn
to check that they did match their taxa labels, as model
organism sequences are frequently assigned to incorrect taxa.
The second dataset was constructed in a similar way, but
first filtered to Mammalia instead of Embryophyta. The low-
frequency taxa were represented by up to 47 relevant sequences
and the five high-frequency taxa were Camelus bactrianus,
Camelus dromedarius, Balaenoptera bonaerensis, Chlorocebus
aethiops, and Papio anubis. Finally, each FASTA file was re-
formatted to single-line using fasta_formatter from the FAST-X
toolkit 0.0.13 (Gordon and Hannon, 2010). The final FASTAs
are included as Supplementary Data Sheets S2, S3 in the
Supplementary Material.

The FASTAs were run through BLAST with the same settings
as in benchmarking. The exclusion condition only differed in
the reduced database. For every taxon, a list of GIs for all
sequences from that taxon was downloaded from GenBank.
These lists were concatenated into a master GI list. The BLAST
option “-negative_gilist” was used to exclude this list from the
database. For each BLAST file, the MEGAN and PIA analyses
were performed with the same settings as in benchmarking. See
the Supplementary Material for details.

It became apparent after analysis that two Mammalia
sequences may be affected by human contamination: GI 2198752
(accession no. U84666.1, Cavia porcellus Y5 scRNA gene, partial
sequence) and GI 13508496 (accession no. AY028924.1, Mammut
americanum 16S ribosomal RNA gene, partial sequence;
mitochondrial gene for mitochondrial product). We ran BLAST
on both sequences to check, changing “-max_target_seqs 500”
to “-num_alignments 1” to produce easily readable output with
the default limit of 500 hits. Other settings were the same as
in benchmarking.

Finally, a small separate test of GenBank data was used
to evaluate the performance of PIA on highly divergent taxa.
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Because of the diversity check, we expect PIA to unnecessarily
discard reads assigned to taxa with few living relatives because
their region of the database will always appear incomplete. We
ran BLAST and PIA on the available GenBank sequences from
two monotypic orders: Ginkgoales (containing the gymnosperm
Ginkgo biloba; 22,600 sequences) and Microbiotheria (containing
the marsupial Dromiciops gliroides; 417 sequences). This used the
same settings as in benchmarking.

RESULTS

Analysis of Empirical sedaDNA Data
Taxonomic assignations of early Holocene sedaDNA from a
submerged palaeochannel in the North Sea by MEGAN and
PIA are compared in Figures 4A,B. The most frequent taxa
are labeled in full. Of these, taxa not native to Europe are
highlighted in bold (see below). The original interactive HTML
chart is included as Supplementary Data Sheet S4 in the
Supplementary Material.

The taxonomic profiles of the MEGAN and PIA outputs
are broadly similar (Figures 4A,B). Figure 4 begins at
Mesangiospermae, to which the vast majority of reads are
assigned by both methods. Most reads are assigned to Zostera
marina (eelgrass), related taxa in Potamogetonaceae or to
its parent order Alismatales, suggesting a wetland or fully
aquatic environment with at least some saltwater influence.
There is also a sizeable signal from grasses (Poaceae). In
the largest remaining segment, Pentapetalae (Figure 4B), both
profiles show a diverse range of taxa found in northwest
Europe today. This includes Rosaceae (strawberry, bramble,
apple, drupe trees), Salix (willow), Populus (poplar), and
Fagales (birch, oak).

However, the numbers of reads making up these taxa differ
significantly. Though proportionally similar, the MEGAN profile
was built from 88,497 reads compared to just 27,547 accepted by
PIA. The MEGAN profile also has higher taxonomic richness,
containing 374 taxa versus 210 (Table 1). Those MEGAN taxa are
also generally more specific. MEGAN assigned far more reads to
genus or lower. Overall, the results are consistent with MEGAN
placing more emphasis on sensitivity than PIA.

Because the samples originate from northwest Europe in
the early Holocene, we would expect DNA sequences to be
comparable to European taxa today. The samples have been
filtered by negative controls which should have removed most
assignations to common modern contaminant taxa present in
reagents. We therefore assume any assignations to non-European
taxa to be false positives.

Many of the most frequent non-European taxa assigned to by
MEGAN are domesticated grasses such as Oryza, Setaria italica
and Sorghum bicolor (Figure 4A). In Pentapetalae (Figure 4B),
most of the terminal taxa in the MEGAN output – those genera
and species that suggest a higher sensitivity than PIA – are non-
European and therefore likely false positives. Table 1 quantifies
all assignations: 40.11% of taxa in the MEGAN profile are suspect
compared to 20.95% for PIA. In total, MEGAN assigned 12.78%
of reads to non-European taxa and PIA assigned just 0.52%.

The false positive taxa have lower counts on average, suggesting
that the minimum support filter in MEGAN is a valid approach,
but in this case PIA was more effective at removing this sort
of false positive.

It appears that the lower sensitivity of PIA is associated with
higher accuracy. To investigate this more objectively, we ran PIA
on test sequences of known origin.

Accuracy Testing With Simulated Data
Embryophyta
Individual reads, their source organism and all four assignations
are listed in the first worksheet of Supplementary Table S2.
Table 2 provides a summary. We considered an assignation
correct if it was to the actual taxon or one of its parent
taxa. For example, if PIA assigned a read from Betula to the
family Betulaceae, it would be a correct assignment at family
level. Family level is typically precise enough to be useful
for environmental reconstruction in plants. An assignment to
Viridiplantae would be correct at kingdom level. An assignment
to Poaceae would be incorrect.

In the control condition, MEGAN assigned 91% of sequences
and PIA 52%, mirroring the higher sensitivity of MEGAN
observed in the analysis of real data. Both were highly accurate
at 97 and 100%, respectively. MEGAN was somewhat more
precise, with 62% of assignments correct to family level or below,
compared to 53.49% for PIA. Overall, MEGAN showed a much
greater ability to assign sequences at the cost of a very small drop
in accuracy compared to PIA.

The exclusion condition, where the source taxa had been
removed from the database, shows a similar pattern of results
with generally worse performance by both tools. However,
MEGAN appears to suffer more. The “Change” columns
in Table 2 show that MEGAN assigns proportionally fewer
sequences at all, correctly, and with precision than PIA. Notably,
accuracy of MEGAN falls to 80% but that of PIA remains
at a healthy 96%.

Despite the exclusion database generally presenting more
of a challenge, there were a small number of sequences
that were assigned better than with the complete database.
PIA did not assign the Lapageria rosea and Lupinus luteus
sequences in the control condition but matched MEGAN’s
broad Mesangiospermae assignment for the exclusion. Both
MEGAN and PIA assigned the Metasequoia glyptostroboides
and Magnolia x soulangeana sequences more precisely in
the exclusion condition, although not particularly so. This
unexpected behavior may be due to peculiarities of the database
around those sequences.

Mammalia
Full results are listed in the second worksheet of Supplementary
Table S2. Table 3 provides a summary. In the control condition,
the Mammalia dataset showed a similar pattern to Embryophyta.
MEGAN assigned more reads and with more precision; both
programs were very accurate. The exclusion condition resulted
in worse performance for both programs, again with a greater
impact on MEGAN. However, the decrease in accuracy was even
more pronounced than for Embryophyta. MEGAN only assigned
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FIGURE 4 | Continued
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FIGURE 4 | Taxonomic profiles of the combined MEGAN and PIA outputs for the seven sediment samples, after filtering each by negative controls. (A) shows
Mesangiospermae, which includes the vast majority of reads. (B) zooms in on Pentapetalae, the largest segment in panel (A) that cannot easily be seen. Taxa not
native to Europe, which are suspected to be false positive assignments for this data, are highlighted in bold. Colors indicate taxon frequency. See Supplementary
Data Sheet S4 in the Supplementary Material for the original interactive HTML chart, which was produced using Krona (Ondov et al., 2011).
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TABLE 1 | Numbers of European and non-European taxa hit and the numbers of
reads assigned to each category in the MEGAN and PIA benchmarking output.

MEGAN PIA

Total taxa 374 210

European 224 (59.89%) 166 (79.05%)

Non-European 150 (40.11%) 44 (20.95%)

Total reads 88,497 27,547

To European taxa 77,189 (87.22%) 27,405 (99.48%)

To non-European taxa 11,308 (12.78%) 142 (0.52%)

Reads assigned to non-European taxa are suspected to be false
positives for this data.

60% of sequences accurately. PIA assigned 83% accurately, which
while better, is far from the 96% accuracy seen for Embryophyta.

Note that these accuracy results are likely a slight
underestimate, as the two questionable sequences (to Cavia
porcellus and Mammut americanum), do indeed appear to be
mislabeled. Both BLAST outputs are dominated by Homo sapiens
and other primates. MEGAN and PIA generally assigned them
either to high mammal taxa or close parent taxa of humans, both
of which are reasonable if the sequences are actually human.

As with Embryophyta, a small number of sequences
were assigned better with their taxa excluded from
the database. MEGAN assigned the Stenella attenuata
sequence incorrectly in the control but broadly correct
after exclusion. PIA assigned the Kogia sima sequence
more precisely after exclusion, though only by one level.

Finally, the only time the Halichoerus grypus sequence
was assigned was by PIA after exclusion, and it did so
correctly to family.

Monotypic Taxa
Phylogenetic Intersection Analysis assigned 5% of reads from
Ginkgoales and with only 77% accuracy. For Microbiotheria, PIA
assigned 37% of reads; 100% were accurate but the most precise
was only to Metatheria. The proportion of reads assigned to
each was considerably lower than the ∼50–60% from the mixed
test datasets above.

DISCUSSION

Ancient metagenomics has much potential, but taxonomic
assignation of reads can be improved. Databases are highly
uneven, resulting in the joint problems of over-represented
taxa filling up hit lists at the expense of poorly-represented
but closer matches, and oasis taxa in sparsely-populated areas
drawing in reads and giving an illusion of confident assignation.
There are methods that partly address these problems in some
circumstances, but we demonstrate here that PIA performs
strongly, providing an objective approach to remove false
positives from data sets.

Benchmarking on plant sedaDNA data against a standard
tool, MEGAN, showed that PIA produces a comparatively low-
resolution taxonomic profile. Far fewer reads are assigned and
those that are rarely make it to genus. However, we argue that

TABLE 2 | Percentages of the 250 sequences assigned by MEGAN and PIA in the Embryophyta accuracy test.

Embryophyta Control BLAST Exclusion BLAST Change

MEGAN PIA MEGAN PIA MEGAN PIA

Assigned 91.20% 51.60% 76.00% 45.60% −15.20% −06.00%

Incorrect 03.07% 00.00% 20.00% 04.39% 16.93% 04.39%

Correct 96.93% 100.00% 80.00% 95.61% −16.93% −04.39%

Correct to above family 35.09% 46.51% 46.84% 60.53% 11.75% 14.02%

Correct to family or below 61.84% 53.49% 33.16% 35.09% −28.68% −18.40%

The control condition BLASTed against the full GenBank nucleotide database (downloaded on 05-09-2019). The exclusion condition omitted the source taxa from the
database. Of those reads assigned, percentages assigned incorrectly or correctly are given. The final two rows detail whether correctly-assigned reads were assigned to
higher taxa or to at least family. These rows sum to the total percent correct.

TABLE 3 | Percentages of the 250 sequences assigned by MEGAN and PIA in the Mammalia accuracy test.

Mammalia Control BLAST Exclusion BLAST Change

MEGAN PIA MEGAN PIA MEGAN PIA

Assigned 93.60% 57.60% 76.40% 52.40% −17.20% −05.20%

Incorrect 02.99% 00.00% 40.31% 16.79% 37.32% 16.79%

Correct 97.01% 100.00% 59.69% 83.21% −37.32% −16.79%

Correct to above family 28.21% 45.14% 41.36% 49.62% 13.36% 4.48%

Correct to family or below 68.80% 54.86% 18.32% 33.59% −50.48% −21.27%

The control condition BLASTed against the full GenBank nucleotide database (downloaded on 05-09-2019). The exclusion condition omitted the source taxa from the
database. Of those reads assigned, percentages assigned incorrectly or correctly are given. The final two rows detail whether correctly-assigned reads were assigned to
higher taxa or to at least family. These rows sum to the total percent correct.
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much of the sensitivity of MEGAN in this context is over-
sensitivity. Both methods describe core ELF039 as coming from
a primarily wetland environment, with a clear signal from fresh
and saltwater plants in Alismatales and the riverine Salix, along
with some signal from grasses in Poaceae and woodland trees in
Fagales. Yet the MEGAN profile assigned nearly 13% of reads to
clearly questionable taxa, such as the tropical Sorghum bicolor,
Australasian Eucalyptus and American Carica papaya, that if
taken at face value would present a radical departure from the
established palaeoecology of Europe. Once such taxa are removed
as “known” false positives, the MEGAN analysis only retrieves
a few more taxa than PIA (Figure 4B), which add little to
the palaeoecological reconstruction and likely still contain false
positives. One example is Arabidopsis thaliana, a known model
organism not expected to feature greatly in the Mesolithic. In our
context, the additional accuracy of PIA appears to outweigh the
increased sensitivity of MEGAN.

The accuracy test on simulated data returned similar results.
With a full BLAST database, MEGAN assigned nearly twice
as many sequences with greater precision and only marginally
lower accuracy than PIA. However, when the source taxa were
excluded from the database, exacerbating the problems caused by
incomplete databases and better representing real metagenomic
data, the improvements of MEGAN over PIA diminished and
the difference in accuracy became substantial. For Embryophyta
sequences, PIA maintained a very high accuracy of 96%, whereas
that of MEGAN fell to 80%.

Both programs performed less well with the Mammalia
dataset, but PIA still returned 83% accuracy after exclusion
of source taxa compared to 60% from MEGAN. We suspect
that this difference may simply be due to the fact that
there are far fewer species of mammal than embryophyte, so
removing 250 mammal taxa will have removed proportionally
more of the relevant database than removing the same
number from Embryophyta. Both PIA and MEGAN performed
very well in the control condition, so it is unlikely to be
directly due to the mammal sequences themselves. Instead,
we suggest that the exclusion condition simulated a more
incomplete database for Mammalia than Embryophyta. PIA
still outperformed MEGAN. However, it is clear that while
PIA copes better with incomplete databases, it is not a
perfect solution.

Additionally, two specific limitations of PIA are apparent from
its algorithm. First, PIA cannot assign to leaf taxa. It can only
assign to a species if there are subspecies in the database, for
example. PIA does not fully take advantage of sequences with very
good taxonomic resolution. If better resolution is desired, it may
be helpful to first identify reads to higher taxa more accurately
using PIA, then further analyze any sequences assigned to taxa of
interest using a different approach.

The second limitation is a result of the taxonomic diversity
check. PIA discards assignments to taxa in sparse areas of the
database because these areas are vulnerable to the influence
of oasis taxa. However, this assumes that sparsity is due to
incompleteness. There are divergent taxa with very few living
relatives that will occupy a naturally sparse database region. PIA
is less likely to accept assignments to these taxa. To demonstrate

this, we ran PIA on the available GenBank sequences from
Ginkgoales and Microbiotheria, which are orders containing a
single species. PIA assigned fewer reads from these taxa than from
the mixed Embryophyta or Mammalia datasets. Such divergent
taxa are unusual, but are less likely to be recovered by PIA. Again,
PIA shows a lack of sensitivity that may limit its application
in some studies.

However, even with these caveats, we have demonstrated
that the improved ability of PIA to address the challenges of
an incomplete reference database can result in highly accurate
taxonomic assignation of metagenomic shotgun data. PIA
produced fewer false positives than the standard approach.
The more likely false positives are to occur, the more
necessary it becomes to manually sort taxa into plausible and
implausible, which requires subjective presuppositions about
the source of the data. This is particularly problematic for
ancient metagenomics where little is known about the study
environment. PIA offers an objective alternative with an
estimated 96% accuracy for plants.
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