761 research outputs found
A voice for change? Trust relationships between ombudsmen, individuals and public service providers
There has been a debate for years about what the role of the ombudsman is. This article examines a key component of the role, to promote trust in public services and government. To be able to do this, however, an ombudsman needs to be perceived as legitimate and be trusted by a range of stakeholders, including the user. This article argues that three key relationships in a person’s complaint journey can build trust in an institution, and must therefore be understood as a system. The restorative justice framework is adapted to conceptualize this trust model as a novel approach to understanding the institution from the perspective of its users. Taking two public sector ombudsmen as examples, the article finds that voice and trust need to be reinforced through the relationships in a consumer journey to manage individual expectations, prevent disengagement, and thereby promote trust in the institution, in public service providers, and in government
The interpretation of mu suppression as an index of mirror neuron activity: past, present and future
Mu suppression studies have been widely used to infer the activity of the human mirror neuron system (MNS) in a number of processes, ranging from action understanding, language, empathy and the development of autism spectrum disorders (ASDs). Although mu suppression is enjoying a resurgence of interest, it has a long history. This review aimed to revisit mu’s past, and examine its recent use to investigate MNS involvement in language, social processes and ASDs. Mu suppression studies have largely failed to produce robust evidence for the role of the MNS in these domains. Several key potential shortcomings with the use and interpretation of mu suppression, documented in the older literature and highlighted by more recent reports, are explored here
Self-organization and the selection of pinwheel density in visual cortical development
Self-organization of neural circuitry is an appealing framework for
understanding cortical development, yet its applicability remains unconfirmed.
Models for the self-organization of neural circuits have been proposed, but
experimentally testable predictions of these models have been less clear. The
visual cortex contains a large number of topological point defects, called
pinwheels, which are detectable in experiments and therefore in principle well
suited for testing predictions of self-organization empirically. Here, we
analytically calculate the density of pinwheels predicted by a pattern
formation model of visual cortical development. An important factor controlling
the density of pinwheels in this model appears to be the presence of non-local
long-range interactions, a property which distinguishes cortical circuits from
many nonliving systems in which self-organization has been studied. We show
that in the limit where the range of these interactions is infinite, the
average pinwheel density converges to . Moreover, an average pinwheel
density close to this value is robustly selected even for intermediate
interaction ranges, a regime arguably covering interaction-ranges in a wide
range of different species. In conclusion, our paper provides the first direct
theoretical demonstration and analysis of pinwheel density selection in models
of cortical self-organization and suggests to quantitatively probe this type of
prediction in future high-precision experiments.Comment: 22 pages, 3 figure
Why Self-Induced Pain Feels Less Painful than Externally Generated Pain: Distinct Brain Activation Patterns in Self- and Externally Generated Pain
Voluntary movement generally inhibits sensory systems. However, it is not clear how such movement influences pain. In the present study, subjects actively or passively experienced mechanical pain or pressure during functional MRI scanning. Pain and pressure were induced using two modified grip strengthener rings, each twined with four crystal bead strings, with polyhedral beads to induce pain, or spherical beads to induce pressure. Subjects held one ring in the left hand and were either asked to squeeze their left hand with their right hand (i.e., active pain or pressure), or to have their left hand squeezed by the experimenter (i.e., passive pain or pressure). Subjects rated the intensity and unpleasantness of the pain sensation lower in the active procedure than in the passive one. Correspondingly, pain-related brain areas were inhibited in the case of self-generated pain, including the primary somatosensory cortex (SI), anterior cingulate cortex (ACC), and the thalamus. These results suggest that active movement behaviorally inhibits concomitant mechanical pain, accompanied by an inhibition of pain response in pain-related brain areas such as the SI cortex. This might be part of the mechanisms underlying the kinesitherapy for pain treatment
Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans
Brain activity is continuously modulated, even at “rest”. The alpha rhythm (8–12 Hz) has been known as the hallmark of the brain's idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An ‘induced alpha’ that was correlated with the paradigm (eyes open/ eyes closed), and a ‘spontaneous alpha’ that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the ‘induced map’ included left lateral temporal cortical regions and the hippocampus; the ‘spontaneous map’ included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the ‘resting brain’; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change
- …