313 research outputs found

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Automatic correction of hand pointing in stereoscopic depth

    Get PDF
    In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)

    Two Distinct Domains within CIITA Mediate Self-Association: Involvement of the GTP-Binding and Leucine-Rich Repeat Domains

    Get PDF
    CIITA is the master regulator of class II major histocompatibility complex gene expression. We present evidence that CIITA can self-associate via two domains: the C terminus (amino acids 700 to 1130) and the GTP-binding domain (amino acids 336 to 702). Heterotypic and homotypic interactions are observed between these two regions. Deletions within the GTP-binding domain that reduce GTP-binding and transactivation function also reduce self-association. In addition, two leucine residues in the C-terminal leucine-rich repeat region are critical for self-association as well as function. This study reveals for the first time a complex pattern of CIITA self-association. These interactions are discussed with regard to the apoptosis signaling proteins, Apaf-1 and Nod1, which share domain arrangements similar to those of CIITA

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems

    Quality of Life and Socioeconomic Indicators Associated with Survival of Myeloid Leukemias in Canada

    Get PDF
    Understanding how patient‐reported quality of life (QoL) and socioeconomic status (SES) relate to survival of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) may improve prognostic information sharing. This study explores associations among QoL, SES, and survival through administration of the Euro‐QoL 5‐Dimension, 3‐level and Functional Assessment of Cancer Therapy‐Leukemia and financial impact questionnaires to 138 adult participants with newly diagnosed AML or MDS in a longitudinal, pan‐Canadian study. Cox regression and lasso variable selection models were used to explore associations among QoL, SES, and established predictors of survival. Secondary outcomes were changes in QoL, performance of the QoL instruments, and lost income. We found that higher QoL and SES were positively associated with survival. The Lasso model selected the visual analog scale of the EQ‐5D‐3L as the most important predictor among all other variables (P = .03; 92% selection). Patients with AML report improved QoL after treatment, despite higher mean out‐of‐pocket expenditures compared with MDS (up to 599CDN/monthforAMLvs599 CDN/month for AML vs 239 for MDS; P = .05), greater loss of productivity‐related income (reaching id="mce_marker"786/month for AML vs $709 for MDS; P < .05), and greater caregiver effects (65% vs 35% caregiver productivity losses for AML vs MDS; P < .05). Our results suggest that including patient‐reported QoL and socioeconomic indicators can improve the accuracy of survival models

    Evolutionary Substitution and Replacement in N-Species Lotka-Volterra Systems

    Get PDF
    The successful invasion of a multi-species resident system by mutants has received a great deal of attention in theoretical ecology but less is known about what happens after the successful invasion. Here, in the framework of Lotka-Volterra (LV) systems, we consider the general question where there is one resident phenotype in each species and the evolutionary outcome after invasion remains one phenotype in each species but these include all the mutant phenotypes. In the first case, called evolutionary substitution, a mutant appears in only one species, the resident phenotype in this species dies out and the mutant coexists with the original phenotypes of the other species. In the second case, called evolutionary replacement, a mutant appears in each species, all resident phenotypes die out and the evolutionary outcome is coexistence among all the mutant phenotypes. For general LV systems, we show that dominance of the resident phenotype by the mutant (i.e. the mutant is always more fit) in each species where the mutant appears leads to evolutionary substitution/replacement. However, it is shown by example that, when dominance is weakened to only assuming the average fitness of the mutants is greater than the average for the resident phenotype, the residents may not die out. We also show evolutionary substitution occurs in two-species competitive LV systems when the initial invasion of the resident system (respectively, of the new coexistence system) is successful (respectively, unsuccessful). Moreover, if sequential evolutionary substitution occurs for either order that the two mutant phenotypes appear (called historically independent replacement), then it is shown evolutionar

    Evolutionary Games

    Get PDF
    International audienceEvolutionary games constitute the most recent major mathematical tool for understanding, modelling and predicting evolution in biology and other fields. They complement other well establlished tools such as branching processes and the Lotka-Volterra [6] equations (e.g. for the predator - prey dynamics or for epidemics evolution). Evolutionary Games also brings novel features to game theory. First, it focuses on the dynam- ics of competition rather than restricting attention to the equilibrium. In particular, it tries to explain how an equilibrium emerges. Second, it brings new de nitions of stability, that are more adapted to the context of large populations. Finally, in contrast to standard game theory, players are not assumed to be \rational" or \knowledgeable" as to anticipate the other players' choices. The objective of this article, is to present founda- tions as well as recent advances in evolutionary games, highlight the novel concepts that they introduce with respect to game theory as formulated by John Nash, and describe through several examples their huge potential as tools for modeling interactions in complex systems

    Different physiology of interferon-α/-γ in models of liver regeneration in the rat

    Get PDF
    Liver regeneration may take place after liver injury through replication of hepatocytes or hepatic progenitor cells called oval cells. Interferons (IFN) are natural cytokines with pleiotrophic effects including antiviral and antiproliferative actions. No data are yet available on the physiology and cellular source of natural IFNs during liver regeneration. To address this issue, we have analyzed the levels and biologic activities of IFN-α/IFN-γ in two models of partial hepatectomy. After 2/3rd partial hepatectomy (PH), hepatic levels of IFN-α and IFN-γ declined transiently in contrast to a transient increase of the IFN-γ serum level. After administration of 2-acetylaminofluorene and partial hepatectomy (AAF/PH model), however, both IFN-α and IFN-γ expression were up-regulated in regenerating livers. Again, the IFN-γ serum level was transiently increased. Whereas hepatic IFN-γ was up-regulated early (day 1–5), but not significantly, in the AAF/PH model, IFN-α was significantly up-regulated at later time points in parallel to the peak of oval cell proliferation (days 7–9). Biological activity of IFN-α was shown by activation of IFN-α-specific signal transduction and induction of IFN-α specific-gene expression. We found a significant infiltration of the liver with inflammatory monocyte-like mononuclear phagocytes (MNP) concomitant to the frequency of oval cells. We localized IFN-α production only in MNPs, but not in oval cells. These events were not observed in normal liver regeneration after standard PH. We conclude that IFN-γ functions as an acute-phase cytokine in both models of liver regeneration and may constitute a systemic component of liver regeneration. IFN-α was increased only in the AAF/PH model, and was associated with proliferation of oval cells. However, oval cells seem not to be the source of IFN-α. Instead, inflammatory MNP infiltrating AAF/PH-treated livers produce IFN-α. These inflammatory MNPs may be involved in the regulation of the oval cell compartment through local expression of cytokines, including IFN-α

    Dynamics of epileptiform activity in mouse hippocampal slices

    Get PDF
    Increase of the extracellular K +  concentration mediates seizure-like synchronized activities in vitro and was proposed to be one of the main factors underlying epileptogenesis in some types of seizures in vivo. While underlying biophysical mechanisms clearly involve cell depolarization and overall increase in excitability, it remains unknown what qualitative changes of the spatio-temporal network dynamics occur after extracellular K +  increase. In this study, we used multi-electrode recordings from mouse hippocampal slices to explore changes of the network activity during progressive increase of the extracellular K +  concentration. Our analysis revealed complex spatio-temporal evolution of epileptiform activity and demonstrated a sequence of state transitions from relatively simple network bursts into complex bursting, with multiple synchronized events within each burst. We describe these transitions as qualitative changes of the state attractors, constructed from experimental data, mediated by elevation of extracellular K +  concentration
    corecore