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Evolutionary Games

Eitan Altman∗

Abstract

Evolutionary games constitute the most recent major mathematical
tool for understanding, modelling and predicting evolution in biology
and other fields. They complement other well establlished tools such
as branching processes and the Lotka-Volterra [6] equations (e.g. for the
predator - prey dynamics or for epidemics evolution). Evolutionary Games
also brings novel features to game theory. First, it focuses on the dynam-
ics of competition rather than restricting attention to the equilibrium.
In particular, it tries to explain how an equilibrium emerges. Second, it
brings new definitions of stability, that are more adapted to the context
of large populations. Finally, in contrast to standard game theory, players
are not assumed to be “rational” or “knowledgeable” as to anticipate the
other players’ choices. The objective of this article, is to present founda-
tions as well as recent advances in evolutionary games, highlight the novel
concepts that they introduce with respect to game theory as formulated
by John Nash, and describe through several examples their huge potential
as tools for modeling interactions in complex systems.

1 Introduction

Evolutionary Game Theory is the youngest of several mathematical tools used in
describing and modeling evolution. It was preceded by the theory of branching
processes [12] and its extensions [1] which have been introduced in order to
explain the evolution of familly names in the English population of the second
half of the 19th century. This theory makes use of the probabilistic distribution
of the number of offspring of an individual in order to predict the probability
at which the whole population would become eventually extinct. It describes
the evolution of the number of offsprings of a given individual. The Lotka-
Volterra equations and their extensions are differential equations that describe
the population size of each of several species that have a predator - prey type
relations. One of the foundations in Evolutionary games (and its extension to
population games) which is often used as the starting point in their definition
is the replicator dynamics, which similarly to the Lotka-Volterra equations,
describe the evolution of the size of various species that interact with each other
(or of various behaviors within a given populations). In both the Lotka-Volterra
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equations as well as in replicator dynamics, the evolution of the size of one type
of population may depend on the sizes of all other populations. Yet, unlike the
Lotka-Volterra equations, the object of the modelling is the normalized sizes
of populations rather than the size itself. By normalized size of some type we
mean the fraction of that type within the whole population. A basic feature in
evolutionary games is thus, that the evolution of the fraction of a given type in
the population depends on the sizes of other types only through the normalized
size rather than through their actual one.

The relative rate of the decrease or increase of the normalized population
size of some type in the replicator dynamics is what we call fitness and is to
be understood in the Darwinian sense. If some type or some behavior increases
more than another one, then it has a larger fitness. the evolution of the fitness as
described by the replicator dynamics is a central object of study in evolutionary
games.

So far we did not actually consider any game, and just discussed ways of
modeling evolution. The relation to game theory is due to the fact that under
some conditions, the fitness converges to some fixed limit, which can be identi-
fied as an equilibrium of a matrix game in which the utilities of the players are
the fitnesses. This limit is then called an ESS - Evolutionary Stable Strategy as
defined by Meynard Smith and Price in [7]. It can be computed using elementary
tools in matrix games and then used for predicting the (long term) distribution
of behaviors within a population. Note that an equililbrium in a matrix game
can be obtained only when the players of the matrix game are rational (each
one maximizing its expected utility, being aware of the utilities of other play-
ers and of the fact that these players maximize their utilities, etc). A central
contribution of Evolutionary Games is thus to show that evolution of possibly
non-rational populations converges under some conditions to the equilibrium
of a game played by rational players. This surprising relationship between the
equilibrium of a non-cooperative matrix game and the limit points of the fitness
dynamics has been supported by a rich body of experimental results, see [3].

On the importance of the ESS for understanding the evolution of species,
Dawkins writes in his book ”The Selfish Gene” [4]: ”we may come to look back
on the invention of the ESS concept as one of the most important advances
in evolutionary theory since Darwin.” He further specifies: ”Maynard Smith’s
concept of the ESS will enable us, for the first time, to see clearly how a collection
of independent selfish entities can come to resemble a single organized whole.”

Here we shall follow the non-traditional approach describing evolutionary
games: we shall first introduce the replicator dynamics and then introduce the
game theoretic intenrpretation related to it.

2 Replicator dynamics

In the biological context, the replicator dynamics is a differential equation that
describes the way in which the usage of strategies changes in time. They are
based on the idea that the average growth rate per individual that uses a given
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strategy is proportional to the excess of fitness of that strategy with respect to
the average fitness.

In engineering, the replicator dynamics could be viewed as a rule for updating
mixed strategies by individuals. It is a decentralized rule since it only requires
knowing the average utility of the population rather than the strategy of each
individual.

Replicator dynamics is one of the most studied dynamics in evolutionary
game theory. It has been introduced by Taylor and Jonker [10]. The replicator
dynamics has been used for describing the evolution of road traffic congestion
in which the fitness is determined by the strategies chosen by all drivers [8].
It has also been studied in the context of the association problem in wireless
communications [9].

Consider a set of N strategies and let pj(t) be the fraction of the whole
population that uses strategy j at time t. Let p(t) be the corresponding N -
dimensional vector. A function fj is associated with the growth rate of strategy
j and it is assumed to depend on the fraction of each of the N strategies in the
population. There are various forms of replicator dynamics [8] and we describe
here the one most commonly usued. It is given by

ṗj(t) = µ pj(t)

[
fj(p(t))−

N∑
k=1

pkfk(p(t))

]
, (1)

where µ is some positive constant and the payoff function fk is called the fitness
of strategy k.

In Evolutionary Games, evolution is assumed to be due to pairwise interac-
tions between players, as will be described in the next section. Therefore fk has
the form fk(p) =

∑N
i=1 J(k, i)p(i) where J(k, i) is the fitness of an individual

playing k if it interacts with an individual that plays strategy i.
Within quite general settings [13], the above replicator dynamics is known

to converge to an ESS (which we introduce in the next section).

3 Evolutionary Games and ESS

Consider an infinite population of players. Each individual i plays at times
tin, n = 1, 2, 3, ... (assumed to constitute an independent Poisson process with
some rate λ) a matrix game against some player j(n) randomly selected within
the population. The choice j(n) of the other players at different times is inde-
pendent. All players have the same finite space of pure strategies (also called
actions) K. Each time it plays, a player may use a mixed strategy p, i.e. a
probability measure over the set of pure strategies. We consider J(k, i) (de-
fined in the previous section) to be the payoff for a tagged individual if it uses
a strategy k and it interacts with an individual using strategy i. With some
abuse of notation, one denotes by J(p, q) the expected payoff for a player who
uses a mixed strategy p when meeting another individual who adopts the mixed
strategy q. If we define a payoff matrix A and consider p and q to be column

3



vectors, then J(p, q) = p′Aq. The payoff function J is indeed linear in p and q.
A strategy q is called a Nash equilibrium if

∀p ∈ ∆(K), J(q, q) ≥ J(p, q) (2)

where ∆(K) is the set of probabilities over the set K.
Suppose that the whole population uses a strategy q and that a small frac-

tion ε (called “mutations”) adopts another strategy p. Evolutionary forces are
expected to select against p if

J(q, εp+ (1− ε)q) > J(p, εp+ (1− ε)q) (3)

3.1 Evolutionary Stable Strategies - ESS

Definition 3.1 q is said to be an Evolutionary Stable Strategy (ESS) if for
every p 6= q there exists some εy > 0 such that (3) holds for all ε ∈ (0, εy).

The definition of ESS is thus related to a robustness property against devia-
tions by a whole (possibly small) fraction of the population. This is an important
difference that distinguishes the equilibrium in populations as seen by biologists
and the standard Nash equilibrium often used in economics context, in which
robustness is defined against the possible deviation of a single user. Why do we
need the stronger type of robustness? Since we deal with large populations, it
is likely to be expected that from time to time, some group of individuals may
deviate. Thus robustness against deviations by a single user is not sufficient
to ensure that deviations will not develop and end up being used by a growing
portion of the population.

Often ESS is defined through the following equivalent definition.

Theorem 3.1 [13, Proposition 2.1] or [5, Theorem 6.4.1, page 63] A strategy
q is said to be an Evolutionary Stable Strategy if and only if ∀p 6= q one of the
following conditions holds:

J(q, q) > J(p, q), (4)

or

J(q, q) = J(p, q) and J(q, p) > J(p, p). (5)

In fact, if condition (4) is satisfied, then the fraction of mutations in the
population will tend to decrease (as it has a lower fitness, meaning a lower
growth rate). Thus the strategy q is then immune to mutations. If it does not
but if still the condition (5) holds, then a population using q is ”weakly” immune
against a mutation using p. Indeed, if the mutant’s population grows, then we
shall frequently have individuals with strategy q competing with mutants. In
such cases, the condition J(q, p) > J(p, p) ensures that the growth rate of the
original population exceeds that of the mutants.
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A mixed strategy q that satisfies (4) for all p 6= q is called Strict Nash
Equilibrium. Recall that a mixed strategy q that satisfies (2) for all p 6= q is
a Nash equilibrium. We conclude from the above theorem that being a strict
Nash equilibrium implies being an ESS, and being an ESS implies being a Nash
equilibrium. Note that whereas a mixed Nash equilibrium is known to exist in
a matrix game, an ESS may not exist. However, an ESS is known to exist in
evolutionary games where the number of strategies available to each player is 2
[13].

Proposition 3.1 In a symmetric game with two strategies for each player and
no pure Nash equilibrium, there exists a unique mixed Nash equilibrium which
is an ESS.

3.2 Example: the Hawk and Dove game

We briefly describe the Hawk and Dove game [7]. A bird that searches food
finds itself competing with another bird over food and has to decide whether
to adopt a peaceful behavior (Dove) or an aggressive one (Hawk). The advan-
tage of behaving aggressively is that in an interaction with a peaceful bird, the
aggressive one gets access to all the food. This advantage comes at a cost: a
Hawk which meets another Hawk ends up fighting with it and thus takes a risk
of getting wounded. In contrast, two Doves that meet in a contest over food
share it without fighting. The fitnesses are summarized in Table 1, in which the
cost for fighting is taken to be some parameter δ > 1/2.

Table 1: The Hawk-Dove Game

H D
H 1/2 - δ 1
D 0 1/2

This game has a unique mixed Nash equilibrium (and thus a unique ESS)
in which the fraction p of aggressive birds is given by

p =
2

1.5 + δ

4 Extension: Evolutionary Stable Sets

Assume that there are two mixed strategies i and j that have the same per-
formance against each other, i.e. J(pi, pj) = J(pj , pj). Then neither one of
them can be an ESS, even if they are quite robust against other strategies. Now
assume that when excluding one of them from the set of mixed strategies, the
other one is an ESS. This could imply that different combinations of these two
ESS’s could co-exist and would together be robust to any other mutations. This
motivates the following definition of an ESSet [2]:
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Definition 4.1 A set E of symmetric Nash-Equilibria is an evolutionarily sta-
ble set (ESSet) if, for all q ∈ E, we have J(q, p) > J(p, p) for all p 6∈ E and
such that J(p, q) = J(q, q).

Properties of ESSet.
(i) For all p and p′ in an ESSet E, we have J(p′, p) = J(p, p).
(ii) If a mixed strategy is an ESS, then the singleton containing that mixed
strategy is an ESSet.
(iii) If the ESSet is not a singleton, then there is no ESS.
(iv) If a mixed strategy is in an ESSet, then it is a Nash-Equilibrium (see [13][p.
48 Example 2.7]).
(v) Every ESSet is a disjoint union of Nash Equilibria.
(vi) A perturbation of a mixed strategy which is in the ESSet can move the
system to another mixed strategy in the ESSet. In particular, every ESSet is
asymptotically stable for the replicator dynamics [2].

5 Recommended Reading:

Several books cover evolutionary game theory well. These include [2, 5, 8, 11,
13]. In addition, the book The Selfish Gene by Dawkins presents an excellent
background on evolution in biology.

6 Summary and Future Directions

The article has provided an overview of the foundations of evolutionary games
which include the ESS (evolutionary stable strategy) equilibrium concept that is
stronger than the standard Nash equilibrium, and the modeling of the dynamics
of the competition through the replicator dynamics. It has further provided a
brief description of recent developments in this area which include the Markov
Decision Evolutionary Games. Evolutionary game framework is a first step
in linking game theory to evolutionary processes. The payoff of a player is
identified as its fitness, i.e. the rate of reproduction. Further development
of this mathematical tool is needed for handling hierarchical fitness, i.e. the
cases where the individual that interacts cannot be directly identified with the
reproduction as it is part of a larger body. For example, the behavior of a blood
cell in the human body when interacting with a virus cannot be modeled as
directly related to the fitness of the blood cell but rather to that of the human
body. A further developement of the theory of evolutionary games is needed
to define meaningful equilibrium notions and relate them to replication in such
contexts.
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