22 research outputs found

    COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    Get PDF
    Abstract BACKGROUND: The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. METHODS: Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAFV600E A375 and NRASQ61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. RESULTS: BRAFV600E/V600K and NRASQ61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAFV600E A375 and NRASQ61R SK-MEL-2 melanoma cell lines. CONCLUSIONS: COX-2 expression correlates with and modulates PD-L1 expression in melanoma cells. These findings have clinical relevance since they provide a rationale to implement novel clinical trials to test COX-2 inhibition as a potential treatment to prevent melanoma progression and immune evasion as well as to enhance the anti-tumor activity of PD-1/PD-L1 based immunotherapy for the treatment of melanoma patients with or without BRAF/NRAS mutations

    New CXCR4 Antagonist Peptide R (Pep R) Improves Standard Therapy in Colorectal Cancer

    No full text
    The chemokine receptor CXCR4 is overexpressed and functional in colorectal cancer. To investigate the role of CXCR4 antagonism in potentiating colon cancer standard therapy, the new peptide CXCR4 antagonist Peptide R (Pep R) was employed. Human colon cancer HCT116 xenograft-bearing mice were treated with chemotherapeutic agents (CT) 5-Fluorouracil (5FU) and oxaliplatin (OX) or 5FU and radio chemotherapy (RT-CT) in the presence of Pep R. After two weeks, CT plus Pep R reduced by 4-fold the relative tumor volume (RTV) as compared to 2- and 1.6-fold reductions induced, respectively, by CT and Pep R. In vitro Pep R addition to CT/RT-CT impaired HCT116 cell growth and further reduced HCT116 and HT29 clonal capability. Thus, the hypothesis that Pep R could target the epithelial mesenchyme transition (EMT) process was evaluated. While CT decreased ECAD and increased ZEB-1 and CD90 expression, the addition of Pep R restored the pretreatment expression. In HCT116 and HT29 cells, CT/RT-CT induced a population of CD133+CXCR4+ cells, supposedly a stem-resistant cancer cell population, while Pep R reduced it. Taken together, the results showed that targeting CXCR4 ameliorates the effect of treatment in colon cancer through inhibition of cell growth and reversal of EMT treatment-induced markers, supporting further clinical studies

    Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types

    No full text
    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues

    CXCR4-CXCL12-CXCR7 and PD-1/PD-L1 in Pancreatic Cancer: CXCL12 Predicts Survival of Radically Resected Patients

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is currently the most deadly cancer. Although characterized by 5–20% of neoplastic cells in the highly fibrotic stroma, immunotherapy is not a valid option in PDAC treatment. As CXCR4-CXCL12 regulates tumor invasion and T-cell access and PD-1/PD-L1 controls immune tolerance, 76 PDACs were evaluated for CXCR4-CXCL12-CXCR7 and PD-1/PD-L1 in the epithelial and stromal component. Neoplastic CXCR4 and CXCL12 discriminated PDACs for recurrence-free survival (RFS), while CXCL12 and CXCR7 discriminated patients for cancer-specific survival (CSS). Interestingly, among patients with radical resection (R0), high tumor CXCR4 clustered patients with worse RFS, high CXCL12 identified poor prognostic patients for both RFS and CSS, while stromal lymphocytic-monocytic PD-L1 associated with improved RFS and CSS. PD-1 was only sporadically expressed (<1%) in focal lymphocyte infiltrate and does not impact prognosis. In multivariate analysis, tumoral CXCL12, perineural invasion, and AJCC lymph node status were independent prognostic factors for RFS; tumoral CXCL12, AJCC Stage, and vascular invasion were independent prognostic factors for CSS. CXCL12’s poor prognostic meaning was confirmed in an additional perspective-independent 13 fine-needle aspiration cytology advanced stage-PDACs. Thus, CXCR4-CXCL12 evaluation in PDAC identifies prognostic categories and could orient therapeutic approaches

    Mutated Von Hippel-Lindau-renal cell carcinoma (RCC) promotes patients specific natural killer (NK) cytotoxicity

    No full text
    Abstract Background Previous evidence demonstrated that restoration of wild type VHL in human renal cancer cells decreased in vitro NK susceptibility. To investigate on the role of tumoral VHL status versus NK capability in renal cancer patients, 51 RCC patients were characterized for VHL mutational status and NK function. Methods VHL mutational status was determined by direct DNA sequencing on tumor tissue. NK cytotoxicity was measured against specific target cells K562, VHL-wild type (CAKI-1) and VHL-mutated (A498) human renal cancer cells through externalization of CD107a and IFN-γ production. Activating NK receptors, NKp30, NKp44, NKp46, NKG2D, DNAM-1, NCAM-1 and FcγRIIIa were evaluated through quantitative RT-PCR. RCC tumoral Tregs were characterized as CD4+CD25+CD127lowFoxp3+ and Treg function was evaluated as inhibition of T-effector proliferation. Results VHL mutations were detected in 26/55 (47%) RCC patients. IL-2 activated whole-blood samples (28 VHL-WT-RCC and 23 VHL-MUT-RCC) were evaluated for NK cytotoxicity toward human renal cancer cells A498, VHL-MUT and CAKI-1, VHL-WT. Efficient NK degranulation and increase in IFN-γ production was detected when IL-2 activated whole-blood from VHL-MUT-RCC patients were tested toward A498 as compared to CAKI-1 cells (CD107a+NK: 7 ± 2% vs 1 ± 0.41%, p = 0.015; IFN-γ+NK: 6.26 ± 3.4% vs 1.78 ± 0.9% respectively). In addition, IL-2 activated NKs induced higher CD107a exposure in the presence of RCC autologous tumor cells or A498 as compared to SN12C (average CD107a+NK: 4.7 and 2.7% vs 0.3% respectively at 10E:1 T ratio). VHL-MUT-RCC tumors were NKp46+ cells infiltrated and expressed high NKp30 and NKp46 receptors as compared to VHL-WT-RCC tumors. A significant lower number of Tregs was detected in the tumor microenvironment of 13 VHL-MUT-RCC as compared to 13 VHL-WT-RCC tumors (1.84 ± 0.36% vs 3.79 ± 0.74% respectively, p = 0.04). Tregs isolated from VHL-MUT-RCC patients were less suppressive of patients T effector proliferation compared to Tregs from VHL-WT-RCC patients (Teff proliferation: 6.7 ± 3.9% vs 2.8 ± 1.1%). Conclusions VHL tumoral mutations improve NKs effectiveness in RCC patients and need to be considered in the evaluation of immune response. Moreover therapeutic strategies designed to target NK cells could be beneficial in VHL-mutated-RCCs alone or in association with immune checkpoints inhibitors

    Preclinical Development of a Novel Class of CXCR4 Antagonist Impairing Solid Tumors Growth and Metastases

    Get PDF
    <div><p>The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X) in CXCL12, also found in the reverse orientation (X-Ar-Ar) in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in <i>in vivo</i> models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells) and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.</p></div

    Biological Role of Tumor/Stromal CXCR4-CXCL12-CXCR7 in MITO16A/MaNGO-OV2 Advanced Ovarian Cancer Patients

    No full text
    This study investigated the prognostic role of the CXCR4-CXCL12-CXCR7 axis in advanced epithelial ovarian cancer (EOC) patients receiving first-line treatment within the MITO16A/MaNGO-OV2 phase-IV trial. CXCR4-CXCL12-CXCR7 expression was evaluated in the epithelial and stromal component of 308 EOC IHC-stained tumor samples. The statistical analysis focused on biomarkers&rsquo; expression, their association with other variables and prognostic value. Zero-inflated tests, shrinkage, bootstrap procedures, and multivariable models were applied. The majority of EOC (75.0%) expressed CXCR4 and CXCR7, 56.5% expressed the entire CXCR4-CXCL12-CXCR7 axis, while only 4.6% were negative for CXCL12 and its cognate receptors, in regard to the epithelial component. Stromal CXCL12 and CXCR7, expressed in 11.2% and 65.5%, respectively, were associated with the FIGO stage. High CXCL12 in epithelial cancer cells was associated with shorter progression-free and overall survival. However, after adjusting for overfitting due to best cut-off multiplicity testing, the significance was lost. This is a wide-ranging, prospective study in which CXCR4-CXCL12-CXCR7 were systematically evaluated in epithelial and stromal components, in selected stage III-IV EOC. Although CXCL12 was not prognostic, epithelial expression identified high-risk FIGO stage III patients for PFS. These data suggest that it might be worth studying the CXCL12 axis as a therapeutic target to improve treatment efficacy in EOC patients

    Biological Role of Tumor/Stromal CXCR4-CXCL12-CXCR7 in MITO16A/MaNGO-OV2 Advanced Ovarian Cancer Patients

    No full text
    This study investigated the prognostic role of the CXCR4-CXCL12-CXCR7 axis in advanced epithelial ovarian cancer (EOC) patients receiving first-line treatment within the MITO16A/MaNGO-OV2 phase-IV trial. CXCR4-CXCL12-CXCR7 expression was evaluated in the epithelial and stromal component of 308 EOC IHC-stained tumor samples. The statistical analysis focused on biomarkers’ expression, their association with other variables and prognostic value. Zero-inflated tests, shrinkage, bootstrap procedures, and multivariable models were applied. The majority of EOC (75.0%) expressed CXCR4 and CXCR7, 56.5% expressed the entire CXCR4-CXCL12-CXCR7 axis, while only 4.6% were negative for CXCL12 and its cognate receptors, in regard to the epithelial component. Stromal CXCL12 and CXCR7, expressed in 11.2% and 65.5%, respectively, were associated with the FIGO stage. High CXCL12 in epithelial cancer cells was associated with shorter progression-free and overall survival. However, after adjusting for overfitting due to best cut-off multiplicity testing, the significance was lost. This is a wide-ranging, prospective study in which CXCR4-CXCL12-CXCR7 were systematically evaluated in epithelial and stromal components, in selected stage III-IV EOC. Although CXCL12 was not prognostic, epithelial expression identified high-risk FIGO stage III patients for PFS. These data suggest that it might be worth studying the CXCL12 axis as a therapeutic target to improve treatment efficacy in EOC patients
    corecore