1,596 research outputs found

    HST Observations of the Double-Peaked Emission Lines in the Seyfert Galaxy Markarian 78: Mass Outflows from a Single AGN

    Full text link
    Previous ground based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several AGN from recent surveys. Are the double lines due to two AGN with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN?We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera (FOC) aboard the Hubble Space Telescope(HST) as part of an ongoing project to determine the kinematics and geometries of active galactic nuclei (AGN) outflows. From the spectroscopic information, we deter- mined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.Comment: 22 pages, 7 figures (2 color), accepted for publication in The Astrophysical Journa

    Disentangling the near infrared continuum spectral components of the inner 500 pc of Mrk 573: two-dimensional maps

    Get PDF
    We present a near infrared study of the spectral components of the continuum in the inner 500×\times500 pc2^2 of the nearby Seyfert galaxy Mrk573 using adaptive optics near-infrared integral field spectroscopy with the instrument NIFS of the Gemini North Telescope at a spatial resolution of ∼\sim50 pc. We performed spectral synthesis using the {\sc starlight} code and constructed maps for the contributions of different age components of the stellar population: young (age≤100age\leq100 Myr), young-intermediate (100<age≤700100<age\leq700 Myr), intermediate-old (700700 Myr 22 Gyr) to the near-IR K-band continuum, as well as their contribution to the total stellar mass. We found that the old stellar population is dominant within the inner 250 pc, while the intermediate age components dominate the continuum at larger distances. A young stellar component contributes up to ∼\sim20% within the inner ∼\sim70 pc, while hot dust emission and featureless continuum components are also necessary to fit the nuclear spectrum, contributing up to 20% of the K-band flux there. The radial distribution of the different age components in the inner kiloparsec of Mrk573 is similar to those obtained by our group for the Seyfert galaxies Mrk1066, Mrk1157 and NGC1068 in previous works using a similar methodology. Young stellar populations (≤\leq100 Myr) are seen in the inner 200-300 pc for all galaxies contributing with ≥\ge20% of the K-band flux, while the near-IR continuum is dominated by the contribution of intermediate-age stars (t=t=100 Myr-2 Gyr) at larger distances. Older stellar populations dominate in the inner 250 pc

    Simultaneous X-ray and Ultraviolet spectroscopy of the Seyfert galaxy NGC 5548. III. X-ray time variability

    Full text link
    The Seyfert 1 galaxy NGC 5548 was observed for a week by Chandra using both the HETGS and LETGS spectrometers. In this paper we study the time variability of the continuum radiation. During our observation, the source showed a gradual increase in flux over four days, followed by a rapid decrease and flattening of the light curve afterwards. Superimposed upon these relatively slow variations several short duration bursts or quasi-periodic oscillations occured with a typical duration of several hours and separation between 0.6-0.9 days. The bursts show a delay of the hard X-rays with respect to the soft X-rays of a few hours. We interprete these bursts as due to a rotating, fluctuating hot spot at approximately 10 gravitational radii; the time delay of the hard X-rays from the bursts agree with the canonical picture of Inverse Compton scattering of the soft accretion disk photons on a hot medium that is relatively close to the central black hole.Comment: 6 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Mapping the Kinematics of the Narrow-Line Region in the Seyfert Galaxy NGC 4151

    Full text link
    Using The Hubble Space Telescope's Space Telescope Imaging Spectrograph HST's STIS, observations of the OIII emission from the narrow-line region (NLR) of NGC 4151 were obtained and radial velocities determined. Five orbits of HST time were used to obtain spectra at five parallel slit configurations, at a position angle of 58 degrees, with spatial resolution 0.2 arcseconds across and 0.1 arcseconds along each slit. A spectral resolving power of ~ 9,000 with the G430M grating gave velocity measurements accurate to ~ 34 km/s. A kinematic model was generated to match the radial velocities, for comparison to previous kinematic models of biconical radial outflow developed for low-dispersion spectra at two slit positions. The new high-resolution spectra permit the measurement of accurate velocity dispersions for each radial-velocity component. The full-width at half-maximum (FWHM) reaches a maximum of 1000 km/s near the nucleus, and generally decreases with increasing distance to about 100 km/s in the extended narrow-line region (ENLR), starting at about 6 arcseconds from the nucleus. In addition to the bright emission knots, which generally fit our model, there are faint high velocity clouds which do not fit the biconical outflow pattern of our kinematic model. These faint clouds occur at the turnover points of the outflowing bright clouds. We suggest possible scenarios that could explain these rogue clouds: (1) backflow resulting from shocks and (2) outflow outside of the bicones, although the latter does not explain how the knots are ionized and accelerated. A comparison of our observations with a high-resolution radio map shows that there is no evidence that the kinematics of the NLR clouds are affected by the radio lobes that comprise the inner jet.Comment: 30 pages, 15 figures (some color), accepted for publication in the Astronomical Journal. Downloadable versions of the paper with high resolution figures/images are available here: http://www.chara.gsu.edu/~crenshaw/NGC4151_kinematics.pdf <--PDF Version http://www.chara.gsu.edu/~crenshaw/NGC4151_kinematics.ps <--PS Versio

    Outflows in the Narrow Line Region of Bright Seyfert Galaxies - I: GMOS-IFU Data

    Get PDF
    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies -- Mrk\,6, Mrk\,79, Mrk\,348, Mrk\,607 and Mrk\,1058 -- obtained from observations with the Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU) on the Gemini North Telescope. The data cover the inner 3\farcs5×\times5\farcs0 -- corresponding to physical scales in the range 0.6×\times0.9 to 1.5×\times2.2\,kpc2^2 -- at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300 -- 7100\,\AA\ and velocity resolution of ≈\approx 90\,km\,s−1^{-1}. The gas excitation is Seyfert like everywhere but show excitation, but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association to the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centered at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk\,348 and Mrk\,79, while in Mrk\,1058 only the blueshifted part is clearly observed, while in the cases of Mrk\,6 and Mrk\,607 the geometry of the outflow needs further constraints from modeling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.Comment: 20 pages, accepted by MNRA
    • …
    corecore