23 research outputs found

    Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia

    Get PDF
    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system but the molecular mechanisms and their relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the preleukemic disorder Shwachman-Diamond syndrome induces mitochondrial dysfunction, oxidative stress and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the mouse model and a range of human preleukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome, the principal leukemia predisposition syndrome. Collectively, our findings reveal a concept of mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as an actionable determinant of disease outcome in human preleukemia

    Optimized gating strategy and supporting flow cytometry data for the determination of the Ki-67 proliferation index in the diagnosis of myelodysplastic syndrome

    No full text
    This Data in Brief article presents a novel flow cytometric assay used to acquire and process the data presented and discussed in the research paper by Mestrum et al., co-submitted to Leukemia Research, entitled: “Integration of the Ki-67 proliferation index into the Ogata score improves its diagnostic sensitivity for low-grade myelodysplastic syndromes.” [1]. The dataset includes the gated fractions of the different myeloid populations in bone marrow (BM) aspirates (total BM cells, CD34 positive blast cells, erythroid cells, granulocytes and monocytes. The raw data is hosted in FlowRepository, while the analyzed data of 1) the fractions of the different myeloid cell populations and 2) the Ki-67 proliferation indices of these myeloid cell populations are provided in tabular form to allow comparison and reproduction of the data when such analyses are performed in a different setting. BM cells from aspirates of 50 myelodysplastic syndrome (MDS) patients and 20 non-clonal cytopenic controls were stained using specific antibody panels and proper fixation and permeabilization to determine the Ki-67 proliferation indices of the different myeloid cell populations. Data was acquired with the three laser, 10-color Navios™ Flow cytometer (Beckman Coulter, Marseille, France) with a blue diode Argon laser (488 nm, 22 mW), red diode Helium/Neon laser (638 nm, 25 mW) and violet air-cooled solid-state diode laser laser (405 nm, 50 mW). A minimum of 100,000 relevant events were acquired per sample, while we aimed at acquiring 500,000 events per sample. Gating was performed with the Infinicyt v2.0 software package (Cytognos SL, Salamanca, Spain). These data may guide the development and standardization of the flow cytometric analysis of the Ki-67 proliferation index (and other markers for cell behavior) for differentiation between non-clonal cytopenic patients and MDS patients. In addition, this assay may be used in myeloid malignancies for research and clinical purposes in other laboratories. This data can be used to encourage future research regarding stem-/progenitor cell resistance against anti-cancer therapies for myeloid malignancies, diagnostics of myeloid malignancies and prognosis of myeloid malignancies. Therefore, these data are of relevance to internist-hematologists, clinical chemists with sub-specialization of hematology and hemato-oncology oriented researchers

    Optimized gating strategy and supporting flow cytometry data for the determination of the Ki-67 proliferation index in the diagnosis of myelodysplastic syndrome

    No full text
    This Data in Brief article presents a novel flow cytometric assay used to acquire and process the data presented and discussed in the research paper by Mestrum et al., co-submitted to Leukemia Research, entitled: "Integration of the Ki-67 proliferation index into the Ogata score improves its diagnostic sensitivity for low-grade myelodysplastic syndromes." [1]. The dataset includes the gated fractions of the different myeloid populations in bone marrow (BM) aspirates (total BM cells, CD34 positive blast cells, erythroid cells, granulocytes and monocytes. The raw data is hosted in FlowRepository, while the analyzed data of 1) the fractions of the different myeloid cell populations and 2) the Ki-67 proliferation indices of these myeloid cell populations are provided in tabular form to allow comparison and reproduction of the data when such analyses are performed in a different setting. BM cells from aspirates of 50 myelodysplastic syndrome (MDS) patients and 20 non-clonal cytopenic controls were stained using specific antibody panels and proper fixation and permeabilization to determine the Ki-67 proliferation indices of the different myeloid cell populations. Data was acquired with the three laser, 10-color Navios™ Flow cytometer (Beckman Coulter, Marseille, France) with a blue diode Argon laser (488 nm, 22 mW), red diode Helium/Neon laser (638 nm, 25 mW) and violet air-cooled solid-state diode laser laser (405 nm, 50 mW). A minimum of 100,000 relevant events were acquired per sample, while we aimed at acquiring 500,000 events per sample. Gating was performed with the Infinicyt v2.0 software package (Cytognos SL, Salamanca, Spain). These data may guide the development and standardization of the flow cytometric analysis of the Ki-67 proliferation index (and other markers for cell behavior) for differentiation between non-clonal cytopenic patients and MDS patients. In addition, this assay may be used in myeloid malignancies for research and clinical purposes in other laboratories. This data can be used to encourage future research regarding stem-/progenitor cell resistance against anti-cancer therapies for myeloid malignancies, diagnostics of myeloid malignancies and prognosis of myeloid malignancies. Therefore, these data are of relevance to internist-hematologists, clinical chemists with sub-specialization of hematology and hemato-oncology oriented researchers
    corecore