5,265 research outputs found
Laser Microirradiation of Chinese Hamster Cells at Wavelength 365 nm
Cells of a V79 subline of the Chinese hamster were microirradiated at wavelength 365 nm in the presence of the psoralen derivative, trioxsalen. Microirradiation was accomplished by a pulsed argon laser microbeam either in anaphase or in interphase 3 hr after mitosis. Inhibition of clonal growth and formation of micronuclei at the first postirradiation mitosis were observed after microirradiation of anaphase chromosomes and of small parts of the interphase nucleus. Microirradiation of the cytoplasm beside the interphase nucleus or between the sets of chromosomes moving apart from each other in anaphase did not produce these effects. Anaphase experiments showed that only the daughter cell which received microirradiated chromatin exhibited an abnormal growth pattern. Most interestingly, shattering of the whole chromosome complement could be induced by microirradiation of small parts of the interphase nucleus and post-treatment with caffeine. Since microirradiation of chromatin in the absence of psoralen was not effective, we consider formation of psoralen photoadducts to nucleic acids in microirradiated chromatin to be the specific cause of the effects. We suggest that DNA photolesions in chromosome segments present in the microirradiated part of the nucleus can induce shattering of all the chromosomes in the microirradiated nucleus. Several possibilities are discussed to explain this unexpected finding
The architecture of chicken chromosome territories changes during differentiation
BACKGROUND:
Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown.
RESULTS:
We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions.
CONCLUSIONS:
Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes
Microdissection of human chromosomes by a laser microbeam
A laser microbeam apparatus, based on an excimer laser pumped dye laser is used to microdissect human chromosomes and to isolate a single chromosome slice
Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments
Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed
Near-optimal asymmetric binary matrix partitions
We study the asymmetric binary matrix partition problem that was recently
introduced by Alon et al. (WINE 2013) to model the impact of asymmetric
information on the revenue of the seller in take-it-or-leave-it sales.
Instances of the problem consist of an binary matrix and a
probability distribution over its columns. A partition scheme
consists of a partition for each row of . The partition acts
as a smoothing operator on row that distributes the expected value of each
partition subset proportionally to all its entries. Given a scheme that
induces a smooth matrix , the partition value is the expected maximum
column entry of . The objective is to find a partition scheme such that
the resulting partition value is maximized. We present a -approximation
algorithm for the case where the probability distribution is uniform and a
-approximation algorithm for non-uniform distributions, significantly
improving results of Alon et al. Although our first algorithm is combinatorial
(and very simple), the analysis is based on linear programming and duality
arguments. In our second result we exploit a nice relation of the problem to
submodular welfare maximization.Comment: 17 page
Three-fold way to extinction in populations of cyclically competing species
Species extinction occurs regularly and unavoidably in ecological systems.
The time scales for extinction can broadly vary and inform on the ecosystem's
stability. We study the spatio-temporal extinction dynamics of a paradigmatic
population model where three species exhibit cyclic competition. The cyclic
dynamics reflects the non-equilibrium nature of the species interactions. While
previous work focusses on the coarsening process as a mechanism that drives the
system to extinction, we found that unexpectedly the dynamics to extinction is
much richer. We observed three different types of dynamics. In addition to
coarsening, in the evolutionary relevant limit of large times, oscillating
traveling waves and heteroclinic orbits play a dominant role. The weight of the
different processes depends on the degree of mixing and the system size. By
analytical arguments and extensive numerical simulations we provide the full
characteristics of scenarios leading to extinction in one of the most
surprising models of ecology
- …