219 research outputs found
Clonal variability of several grapevine cultivars (V. vinifera L.) grown in the Emilia-Romagna
Clonal selection has been performed over the past 2 decades by the University of Bologna to maintain the traditional grapevine cultivars grown in the Emilia-Romagna. Around 1980 budwood canes from several biotypes of the cvs Lambrusco di Sorbara, Lambrusco Salamino, Lambrusco Grasparossa, Lambrusco Maestri and Fortana were collected from old vineyards and used to establish a preliminary trial. The vines were tested for their virus status and compared for yield, grape quality, leaf characters and phenological phases in order to evaluate the biotype variability and clonal repeatability within each cultivar. L. Salamino, L. Grasparossa and L. Maestri showed very low degrees of genetic determination for yield and quality, while Fortana and L Sorbara exhibited quite high degrees. The results in both cases were independent on the virus status of the vines. While for cvs L. Salamino, L. Maestri and L. Grasparossa selection can be made only on the basis of virus status, good selection potentials were found with cvs L. Sorbara and Fortana. Fortana also exhibited marked differences in leaf morphology and phenological phases. Further investigations are needed to better characterize the diversity among biotypes of this variety, since the delimitation between cultivars and clones remains questionable
Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy
The ability to exploit energy autonomously is one of the hallmarks of life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. In contrast, despite electrical energy being an attractive energy source to power nanosystems, its autonomous harnessing has received little attention. Herein we consider an operation mode that allows the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems
Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes
The mechanical interlocking of molecular components can lead to the appearance of novel and unconventional properties and processes, with potential relevance for applications in nanoscience, sensing, catalysis, and materials science. We describe a [3]rotaxane in which the number of recognition sites available on the axle component can be changed by acid-base inputs, encompassing cases in which this number is larger, equal to, or smaller than the number of interlocked macrocycles. These species exhibit very different properties and give rise to a unique network of acid-base reactions that leads to a fine pKa tuning of chemically equivalent acidic sites. The rotaxane where only one station is available for two rings exhibits a rich coconformational dynamics, unveiled by an integrated experimental and computational approach. In this compound, the two crown ethers compete for the sole recognition site, but can also come together to share it, driven by the need to minimize free energy without evident inter-ring interactions
Multimodal sensing in rewritable, data matrix azobenzene-based devices
Here, we exploited the UV light and thermal triggered E <-> Z photoisomerization of an azobenzene compound to fabricate multimodal readable and rewritable data matrix based devices. We first demonstrated that the UV light sensing capabilities can be simultaneously monitored by the change in optical, spectroscopic, and electrical properties. Then we exploited this capability by integrating tetra(azobenzene)methane crystals in a micrometric TAG whose information can be modified and repristinated by local UV treatment and thermal annealing. The system was characterized by polarized optical microscopy, Raman spectroscopy, conductive atomic force microscopy and Kelvin Probe Force Microscopy
Improving Fatigue Resistance of Dihydropyrene by Encapsulation within a Coordination Cage
Photochromic molecules undergo reversible isomerization upon irradiation with light at different wavelengths, a process that can alter their physical and chemical properties. For instance, dihydropyrene (DHP) is a deep-colored compound that isomerizes to light-brown cyclophanediene (CPD) upon irradiation with visible light. CPD can then isomerize back to DHP upon irradiation with UV light or thermally in the dark. Conversion between DHP and CPD is thought to proceed via a biradical intermediate; bimolecular events involving this unstable intermediate thus result in rapid decomposition and poor cycling performance. Here, we show that the reversible isomerization of DHP can be stabilized upon confinement within a PdII6L4 coordination cage. By protecting this reactive intermediate using the cage, each isomerization reaction proceeds to higher yield, which significantly decreases the fatigue experienced by the system upon repeated photocycling. Although molecular confinement is known to help stabilize reactive species, this effect is not typically employed to protect reactive intermediates and thus improve reaction yields. We envisage that performing reactions under confinement will not only improve the cyclic performance of photochromic molecules, but may also increase the amount of product obtainable from traditionally low-yielding organic reactions
Network Analysis of Biochemical Logic for Noise Reduction and Stability: A System of Three Coupled Enzymatic AND Gates
We develop an approach aimed at optimizing the parameters of a network of
biochemical logic gates for reduction of the "analog" noise buildup.
Experiments for three coupled enzymatic AND gates are reported, illustrating
our procedure. Specifically, starch - one of the controlled network inputs - is
converted to maltose by beta-amylase. With the use of phosphate (another
controlled input), maltose phosphorylase then produces glucose. Finally,
nicotinamide adenine dinucleotide (NAD+) - the third controlled input - is
reduced under the action of glucose dehydrogenase to yield the optically
detected signal. Network functioning is analyzed by varying selective inputs
and fitting standardized few-parameters "response-surface" functions assumed
for each gate. This allows a certain probe of the individual gate quality, but
primarily yields information on the relative contribution of the gates to noise
amplification. The derived information is then used to modify our experimental
system to put it in a regime of a less noisy operation.Comment: 31 pages, PD
Endovascular Abdominal Aortic Aneurysm Repair With Ovation Alto Stent Graft: Protocol for the ALTAIR (ALTo endogrAft Italian Registry) Study
Background: Since 2010, the Ovation Abdominal Stent Graft System has offered an innovative sealing option for abdominal aortic aneurysm (AAA) by including a sealing ring filled with polymer 13 mm from the renal arteries. In August 2020, the redesigned Ovation Alto, with a sealing ring 6 mm closer to the top of the fabric, received CE Mark approval. Objective: This registry study aims to evaluate intraoperative, perioperative, and postoperative results in patients treated by the Alto stent graft (Endologix Inc.) for elective AAA repair in a multicentric consecutive experience. Methods: All consecutive eligible patients submitted to endovascular aneurysm repair (EVAR) by Alto Endovascular AAA implantation will be included in this analysis. Patients will be submitted to EVAR procedures based on their own preferences, anatomical features, and operators experience. An estimated number of 300 patients submitted to EVAR with Alto stent graft should be enrolled. It is estimated that the inclusion period will be 24 months. The follow-up period is set to be 5 years. Full data sets and cross-sectional images of contrast-enhanced computed tomography scan performed before EVAR, at the first postoperative month, at 24 or 36 months, and at 5-year follow-up interval will be reported in the central database for a centralized core laboratory review of morphological changes. The primary endpoint of the study is to evaluate the technical and clinical success of EVAR with the Alto stent graft in short- (90-day), mid- (1-year), and long-term (5-year) follow-up periods. The following secondary endpoints will be also addressed: operative time; intraoperative radiation exposure; contrast medium usage; AAA sac shrinkage at 12-month and 5-year follow-up; any potential role of patients' baseline characteristics, valuated on preoperative computed tomography angiographic study, and of device configuration (number of component) in the primary endpoint. Results: The study is currently in the recruitment phase and the final patient is expected to be treated by the end of 2023 and then followed up for 5 years. A total of 300 patients will be recruited. Analyses will focus on primary and secondary endpoints. Updated results will be shared at 1- and 3-5-year follow-ups. Conclusions: The results from this registry study could validate the safety and effectiveness of the new design of the Ovation Alto Stent Graft. The technical modifications to the endograft could allow for accommodation of a more comprehensive range of anatomies on-label
DEVELOPMENT AND CHARACTERIZATION OF TIO2 COATINGS PREPARED BY ELECTRIC ARC-PHYSICAL VAPOUR DEPOSITION SYSTEM
TiO2 thin coatings were prepared, on various substrates, through evaporation of metallic titanium in an oxidizing atmosphere by modified electric arc physical vapor deposition (EA-PVD). The coatings were characterized chemically (by means of XPS and SIMS) and from the structural point of view (by means of XRD and Raman spectroscopy), in order to understand the factors which lead to homoge-neous coatings with high anatase content. The type of substrate is the main parameter that influence the crystal structure of the coatings: when stainless steel is used as substrate the coatings consist es-sentially of rutile, while on glass substrates coatings containing mainly anatase are obtained. The photocatalytic activity of the samples upon UVA irradiation was tested by using phenol as the target molecule. Phenol in the solution can be photocatalytically and rapidly degraded through the EA-PVD anatase TiO2 coatings
Biomolecular Filters for Improved Separation of Output Signals in Enzyme Logic Systems Applied to Biomedical Analysis
Biomolecular logic systems processing biochemical input signals and producing
"digital" outputs in the form of YES/NO were developed for analysis of
physiological conditions characteristic of liver injury, soft tissue injury and
abdominal trauma. Injury biomarkers were used as input signals for activating
the logic systems. Their normal physiological concentrations were defined as
logic-0 level, while their pathologically elevated concentrations were defined
as logic-1 values. Since the input concentrations applied as logic 0 and 1
values were not sufficiently different, the output signals being at low and
high values (0, 1 outputs) were separated with a short gap making their
discrimination difficult. Coupled enzymatic reactions functioning as a
biomolecular signal processing system with a built-in filter property were
developed. The filter process involves a partial back-conversion of the
optical-output-signal-yielding product, but only at its low concentrations,
thus allowing the proper discrimination between 0 and 1 output values
Optimization of Enzymatic Biochemical Logic for Noise Reduction and Scalability: How Many Biocomputing Gates Can Be Interconnected in a Circuit?
We report an experimental evaluation of the "input-output surface" for a
biochemical AND gate. The obtained data are modeled within the rate-equation
approach, with the aim to map out the gate function and cast it in the language
of logic variables appropriate for analysis of Boolean logic for scalability.
In order to minimize "analog" noise, we consider a theoretical approach for
determining an optimal set for the process parameters to minimize "analog"
noise amplification for gate concatenation. We establish that under optimized
conditions, presently studied biochemical gates can be concatenated for up to
order 10 processing steps. Beyond that, new paradigms for avoiding noise
build-up will have to be developed. We offer a general discussion of the ideas
and possible future challenges for both experimental and theoretical research
for advancing scalable biochemical computing
- …