42 research outputs found

    Antidepressants and Breast and Ovarian Cancer Risk: A Review of the Literature and Researchers\u27 Financial Associations with Industry

    Get PDF
    Background Antidepressant (AD) use has been purported to increase the risk of breast and ovarian cancer, although both epidemiological and pre-clinical studies have reported mixed results [1]–[6]. Previous studies in a variety of biomedical fields have found that financial ties to drug companies are associated with favorable study conclusions [7]. Methods and Findings We searched English-language articles in MEDLINE, PsychINFO, the Science Citations Index and the Cochrane Central Register of Controlled Clinical Trials (through November 2010). A total of 61 articles that assessed the relationship between breast and ovarian cancer and AD use and articles that examined the effect of ADs on cell growth were included. Multi-modal screening techniques were used to investigate researchers\u27 financial ties with industry. A random effects meta-analysis was used to pool the findings from the epidemiological literature. Thirty-three percent (20/61) of the studies reported a positive association between ADs and cancer. Sixty-seven percent (41/61) of the studies reported no association or antiproliferative effect. The pooled odds ratio for the association between AD use and breast/ovarian cancer in the epidemiologic studies was 1.11 (95% CI, 1.03–1.20). Researchers with industry affiliations were significantly less likely than researchers without those ties to conclude that ADs increase the risk of breast or ovarian cancer. (0/15 [0%] vs 20/46 [43.5%] (Fisher\u27s Exact test P = 0.0012). Conclusions Both the pre-clinical and clinical data are mixed in terms of showing an association between AD use and breast and ovarian cancer. The possibility that ADs may exhibit a bi-phasic effect, whereby short-term use and/or low dose antidepressants may increase the risk of breast and ovarian cancer, warrants further investigation. Industry affiliations were significantly associated with negative conclusions regarding cancer risk. The findings have implications in light of the 2009 USPSTF guidelines for breast cancer screening and for the informed consent process

    Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum</it>, has developed resistance to many of the drugs in use. The recommended treatment policy is now to use drug combinations. The atovaquone-proguanil (AP) drug combination, is one of the treatment and prophylaxis options. Atovaquone (ATQ) exerts its action by inhibiting plasmodial mitochondria electron transport at the level of the cytochrome bc1 complex. <it>Plasmodium falciparum in vitro </it>resistance to ATQ has been associated with specific point mutations in the region spanning codons 271-284 of the <it>cytochrome b </it>gene. ATQ -resistant <it>Plasmodium yoelii </it>and <it>Plasmodium berghei </it>lines have been obtained and resistant lines have amino acid mutations in their CYT <it>b </it>protein sequences. <it>Plasmodium chabaudi </it>model for studying drug-responses and drug-resistance selection is a very useful rodent malaria model but no ATQ resistant parasites have been reported so far. The aim of this study was to determine the ATQ sensitivity of the <it>P. chabaudi </it>clones, to select a resistant parasite line and to perform genotypic characterization of the <it>cytb </it>gene of these clones.</p> <p>Methods</p> <p>To select for ATQ resistance, <it>Plasmodium. chabaudi chabaudi </it>clones were exposed to gradually increasing concentrations of ATQ during several consecutive passages in mice. <it>Plasmodium chabaudi cytb </it>gene was amplified and sequenced.</p> <p>Results</p> <p>ATQ resistance was selected from the clone AS-3CQ. In order to confirm whether an heritable genetic mutation underlies the response of AS-ATQ to ATQ, the stability of the drug resistance phenotype in this clone was evaluated by measuring drug responses after (i) multiple blood passages in the absence of the drug, (ii) freeze/thawing of parasites in liquid nitrogen and (iii) transmission through a mosquito host, <it>Anopheles stephensi</it>. ATQ resistance phenotype of the drug-selected parasite clone kept unaltered. Therefore, ATQ resistance in clone AS-ATQ is genetically encoded. The Minimum Curative Dose of AS-ATQ showed a six-fold increase in MCD to ATQ relative to AS-3CQ.</p> <p>Conclusions</p> <p>A mutation was found on the <it>P. chabaudi cytb </it>gene from the AS-ATQ sample a substitution at the residue Tyr268 for an Asn, this mutation is homologous to the one found in <it>P. falciparum </it>isolates resistant to ATQ.</p

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Multiple var2csa-Type PfEMP1 Genes Located at Different Chromosomal Loci Occur in Many Plasmodium falciparum Isolates

    Get PDF
    BACKGROUND:The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (approximately 26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. CONCLUSIONS/SIGNIFICANCE:Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria

    The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by <it>Plasmodium falciparum </it>parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target.</p> <p>Methods</p> <p>A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob.</p> <p>Results</p> <p>Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of <it>P. falciparum</it>-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules.</p> <p>Conclusions</p> <p>High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.</p

    Antidepressants and Breast and Ovarian Cancer Risk: A Review of the Literature and Researchers' Financial Associations with Industry

    Get PDF
    BACKGROUND: Antidepressant (AD) use has been purported to increase the risk of breast and ovarian cancer, although both epidemiological and pre-clinical studies have reported mixed results. Previous studies in a variety of biomedical fields have found that financial ties to drug companies are associated with favorable study conclusions. METHODS AND FINDINGS: We searched English-language articles in MEDLINE, PsychINFO, the Science Citations Index and the Cochrane Central Register of Controlled Clinical Trials (through November 2010). A total of 61 articles that assessed the relationship between breast and ovarian cancer and AD use and articles that examined the effect of ADs on cell growth were included. Multi-modal screening techniques were used to investigate researchers' financial ties with industry. A random effects meta-analysis was used to pool the findings from the epidemiological literature. Thirty-three percent (20/61) of the studies reported a positive association between ADs and cancer. Sixty-seven percent (41/61) of the studies reported no association or antiproliferative effect. The pooled odds ratio for the association between AD use and breast/ovarian cancer in the epidemiologic studies was 1.11 (95% CI, 1.03-1.20). Researchers with industry affiliations were significantly less likely than researchers without those ties to conclude that ADs increase the risk of breast or ovarian cancer. (0/15 [0%] vs 20/46 [43.5%] (Fisher's Exact test P = 0.0012). CONCLUSIONS: Both the pre-clinical and clinical data are mixed in terms of showing an association between AD use and breast and ovarian cancer. The possibility that ADs may exhibit a bi-phasic effect, whereby short-term use and/or low dose antidepressants may increase the risk of breast and ovarian cancer, warrants further investigation. Industry affiliations were significantly associated with negative conclusions regarding cancer risk. The findings have implications in light of the 2009 USPSTF guidelines for breast cancer screening and for the informed consent process

    Nonspecific Immunoglobulin M Binding and Chondroitin Sulfate A Binding Are Linked Phenotypes of Plasmodium falciparum Isolates Implicated in Malaria during Pregnancy

    Get PDF
    Binding of immunoglobulin M (IgM) antibodies from normal human serum to the surface of Plasmodium falciparum-infected red blood cells (iRBC) has previously been demonstrated only in parasites that form rosettes with uninfected red cells. We show that natural, nonspecific IgM but not IgG, IgA, IgD, or IgE also binds to the surface of iRBC selected for adhesion to chondroitin sulfate A (CSA), a placental receptor for parasites associated with malaria in pregnancy. The protease sensitivity of IgM-binding appears to match that of CSA binding, suggesting that the two phenotypes may be mediated by the same parasite molecule. We also show that a wide range of mouse monoclonal antibodies of the IgM class bind nonspecifically to CSA-selected iRBC, an important consideration in the interpretation of immunological assays performed on these parasite lines

    Antidepressants and Breast and Ovarian Cancer Risk: A Review of the Literature and Researchers\u27 Financial Associations with Industry

    No full text
    Background Antidepressant (AD) use has been purported to increase the risk of breast and ovarian cancer, although both epidemiological and pre-clinical studies have reported mixed results [1]–[6]. Previous studies in a variety of biomedical fields have found that financial ties to drug companies are associated with favorable study conclusions [7]. Methods and Findings We searched English-language articles in MEDLINE, PsychINFO, the Science Citations Index and the Cochrane Central Register of Controlled Clinical Trials (through November 2010). A total of 61 articles that assessed the relationship between breast and ovarian cancer and AD use and articles that examined the effect of ADs on cell growth were included. Multi-modal screening techniques were used to investigate researchers\u27 financial ties with industry. A random effects meta-analysis was used to pool the findings from the epidemiological literature. Thirty-three percent (20/61) of the studies reported a positive association between ADs and cancer. Sixty-seven percent (41/61) of the studies reported no association or antiproliferative effect. The pooled odds ratio for the association between AD use and breast/ovarian cancer in the epidemiologic studies was 1.11 (95% CI, 1.03–1.20). Researchers with industry affiliations were significantly less likely than researchers without those ties to conclude that ADs increase the risk of breast or ovarian cancer. (0/15 [0%] vs 20/46 [43.5%] (Fisher\u27s Exact test P = 0.0012). Conclusions Both the pre-clinical and clinical data are mixed in terms of showing an association between AD use and breast and ovarian cancer. The possibility that ADs may exhibit a bi-phasic effect, whereby short-term use and/or low dose antidepressants may increase the risk of breast and ovarian cancer, warrants further investigation. Industry affiliations were significantly associated with negative conclusions regarding cancer risk. The findings have implications in light of the 2009 USPSTF guidelines for breast cancer screening and for the informed consent process

    Comparative Testing of Six Antigen-Based Malaria Vaccine Candidates Directed Toward Merozoite-Stage Plasmodium falciparum▿

    Get PDF
    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-119 and five Pichia pastoris candidates, including two versions of MSP-119, AMA-1 (domains I and II), AMA-1+MSP-119, and fused AMA-1/MSP-119). Animals were immunized with equimolar amounts of each antigen, formulated in Montanide ISA720. The specificities and titers of antibodies were compared using immunofluorescence assays and enzyme-linked immunosorbent assay (ELISA). The antiparasite activity of immunoglobulin G (IgG) in in vitro cultures was determined by growth inhibition assay, flow cytometry, lactate dehydrogenase assay, and microscopy. Baculovirus MSP-119 immunizations produced the highest parasite-specific antibody titers in immunofluorescence assays. In ELISAs, baculovirus-produced MSP-119 induced more antibodies than any other single MSP-119 immunogen and three times more MSP-119 specific antibodies than the AMA-1/MSP-119 fusion. Antibodies induced by baculovirus MSP-119 gave the highest levels of growth inhibition in HB3 and 3D7 parasite cultures, followed by AMA-1+MSP-119 and the AMA-1/MSP-119 fusion. With the FCR3 isolate (homologous to the AMA-1 construct), antibodies to the three AMA-1-containing candidates gave the highest levels of growth inhibition at high IgG concentrations, but antibodies to baculovirus MSP-119 inhibited as well or better at lower IgG concentrations. The two P. pastoris-produced MSP-119-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating readouts but it is not known whether any of them accurately reflect clinical protection
    corecore