83 research outputs found

    An integrated biochemical prediction model of all-cause mortality in patients undergoing lower extremity bypass surgery for advanced peripheral artery disease

    Get PDF
    BackgroundPatients with advanced peripheral artery disease (PAD) have a high prevalence of cardiovascular (CV) risk factors and shortened life expectancy. However, CV risk factors poorly predict midterm (<5 years) mortality in this population. This study tested the hypothesis that baseline biochemical parameters would add clinically meaningful predictive information in patients undergoing lower extremity bypass operations.MethodsThis was a prospective cohort study of patients with clinically advanced PAD undergoing lower extremity bypass surgery. The Cox proportional hazard model was used to assess the main outcome of all-cause mortality. A clinical model was constructed with known CV risk factors, and the incremental value of the addition of clinical chemistry, lipid assessment, and a panel of 11 inflammatory parameters was investigated using the C statistic, the integrated discrimination improvement index, and Akaike information criterion.ResultsThe study monitored 225 patients for a median of 893 days (interquartile range, 539-1315 days). In this study, 50 patients (22.22%) died during the follow-up period. By life-table analysis (expressed as percent surviving ± standard error), survival at 1, 2, 3, 4, and 5 years, respectively, was 90.5% ± 1.9%, 83.4% ± 2.5%, 77.5% ± 3.1%, 71.0% ± 3.8%, and 65.3% ± 6.5%. Compared with survivors, decedents were older, diabetic, had extant coronary artery disease, and were more likely to present with critical limb ischemia as their indication for bypass surgery (P < .05). After adjustment for the above, clinical chemistry and inflammatory parameters significant (hazard ratio [95% confidence interval]) for all-cause mortality were albumin (0.43 [0.26-0.71]; P = .001), estimated glomerular filtration rate (0.98 [0.97-0.99]; P = .023), high-sensitivity C-reactive protein (hsCRP; 3.21 [1.21-8.55]; P = .019), and soluble vascular cell adhesion molecule (1.74 [1.04-2.91]; P = .034). Of the inflammatory molecules investigated, hsCRP proved most robust and representative of the integrated inflammatory response. Albumin, eGFR, and hsCRP improved the C statistic and integrated discrimination improvement index beyond that of the clinical model and produced a final C statistic of 0.82.ConclusionsA risk prediction model including traditional risk factors and parameters of inflammation, renal function, and nutrition had excellent discriminatory ability in predicting all-cause mortality in patients with clinically advanced PAD undergoing bypass surgery

    A single nucleotide polymorphism in the p27Kip1 gene is associated with primary patency of lower extremity vein bypass grafts

    Get PDF
    ObjectiveFactors responsible for the variability in outcomes after lower extremity vein bypass grafting (LEVBG) are poorly understood. Recent evidence has suggested that a single nucleotide polymorphism (SNP) in the promoter region of the p27Kip1 gene, a cell-cycle regulator, is associated with coronary in-stent restenosis. We hypothesized an association with vein graft patency.MethodsThis was a retrospective genetic association study nested within a prospective cohort of 204 patients from three referral centers undergoing LEVBG for claudication or critical ischemia. The main outcome measure was primary vein graft patency.ResultsAll patients were followed up for a minimum of 1 year with duplex graft surveillance (median follow-up, 893 days; interquartile range, 539-1315). Genomic DNA was isolated and SNP analysis for the p27Kip1-838C>A variants was performed. Allele frequencies were correlated with graft outcome using survival analysis and Cox proportional hazards modeling. The p27Kip1-838C>A allele frequencies observed were CA, 53%; CC, 30%; and AA, 17%, satisfying Hardy-Weinberg equilibrium. Race (P = .025) and history of coronary artery disease (P = .027) were different across the genotypes; all other baseline variables were similar. Primary graft patency was greater among patients with the -838AA genotype (75% AA vs 55% CA/CC at 3 years; P = .029). In a Cox proportional hazards model including age, sex, race, diabetes, critical limb ischemia, redo (vs primary) bypass, vein type, and baseline C-reactive protein level, the p27Kip1-838AA genotype was significantly associated with higher graft patency (hazard ratio for failure, 0.4; 95% confidence interval, 0.17-0.93). Genotype was also associated with early (0-1 month) changes in graft lumen diameter by ultrasound imaging.ConclusionsThese data suggest that the p27Kip1-838C>A SNP is associated with LEVBG patency and, together with previous reports, underscore a central role for p27Kip1 in the generic response to vascular injury

    Elastogenesis Correlates With Pigment Production in Murine Aortic Valve Leaflets

    Get PDF
    Objective: Aortic valve (AV) leaflets rely on a precise extracellular matrix (ECM) microarchitecture for appropriate biomechanical performance. The ECM structure is maintained by valvular interstitial cells (VICs), which reside within the leaflets. The presence of pigment produced by a melanocytic population of VICs in mice with dark coats has been generally regarded as a nuisance, as it interferes with histological analysis of the AV leaflets. However, our previous studies have shown that the presence of pigment correlates with increased mechanical stiffness within the leaflets as measured by nanoindentation analyses. In the current study, we seek to better characterize the phenotype of understudied melanocytic VICs, explore the role of these VICs in ECM patterning, and assess the presence of these VICs in human aortic valve tissues. Approach and Results: Immunofluorescence and immunohistochemistry revealed that melanocytes within murine AV leaflets express phenotypic markers of either neuronal or glial cells. These VIC subpopulations exhibited regional patterns that corresponded to the distribution of elastin and glycosaminoglycan ECM proteins, respectively. VICs with neuronal and glial phenotypes were also found in human AV leaflets and showed ECM associations similar to those observed in murine leaflets. A subset of VICs within human AV leaflets also expressed dopachrome tautomerase, a common melanocyte marker. A spontaneous mouse mutant with no aortic valve pigmentation lacked elastic fibers and had reduced elastin gene expression within AV leaflets. A hyperpigmented transgenic mouse exhibited increased AV leaflet elastic fibers and elastin gene expression. Conclusions: Melanocytic VIC subpopulations appear critical for appropriate elastogenesis in mouse AVs, providing new insight into the regulation of AV ECM homeostasis. The identification of a similar VIC population in human AVs suggests conservation across species

    Elastogenesis Correlates With Pigment Production in Murine Aortic Valve Leaflets

    Get PDF
    Objective: Aortic valve (AV) leaflets rely on a precise extracellular matrix (ECM) microarchitecture for appropriate biomechanical performance. The ECM structure is maintained by valvular interstitial cells (VICs), which reside within the leaflets. The presence of pigment produced by a melanocytic population of VICs in mice with dark coats has been generally regarded as a nuisance, as it interferes with histological analysis of the AV leaflets. However, our previous studies have shown that the presence of pigment correlates with increased mechanical stiffness within the leaflets as measured by nanoindentation analyses. In the current study, we seek to better characterize the phenotype of understudied melanocytic VICs, explore the role of these VICs in ECM patterning, and assess the presence of these VICs in human aortic valve tissues.Approach and Results: Immunofluorescence and immunohistochemistry revealed that melanocytes within murine AV leaflets express phenotypic markers of either neuronal or glial cells. These VIC subpopulations exhibited regional patterns that corresponded to the distribution of elastin and glycosaminoglycan ECM proteins, respectively. VICs with neuronal and glial phenotypes were also found in human AV leaflets and showed ECM associations similar to those observed in murine leaflets. A subset of VICs within human AV leaflets also expressed dopachrome tautomerase, a common melanocyte marker. A spontaneous mouse mutant with no aortic valve pigmentation lacked elastic fibers and had reduced elastin gene expression within AV leaflets. A hyperpigmented transgenic mouse exhibited increased AV leaflet elastic fibers and elastin gene expression.Conclusions: Melanocytic VIC subpopulations appear critical for appropriate elastogenesis in mouse AVs, providing new insight into the regulation of AV ECM homeostasis. The identification of a similar VIC population in human AVs suggests conservation across species

    Advanced Preparation Makes Research in Emergencies and Isolation Care Possible: The Case of Novel Coronavirus Disease (COVID-19)

    Get PDF
    The optimal time to initiate research on emergencies is before they occur. However, timely initiation of high-quality research may launch during an emergency under the right conditions. These include an appropriate context, clarity in scientific aims, preexisting resources, strong operational and research structures that are facile, and good governance. Here, Nebraskan rapid research efforts early during the 2020 coronavirus disease pandemic, while participating in the first use of U.S. federal quarantine in 50 years, are described from these aspects, as the global experience with this severe emerging infection grew apace. The experience has lessons in purpose, structure, function, and performance of research in any emergency, when facing any threat

    ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices)

    Get PDF
    This revision of the “ACC/AHA/NASPE Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices” updates the previous versions published in 1984, 1991, 1998, and 2002. Revision of the statement was deemed necessary for multiple reasons: 1) Major studies have been reported that have advanced our knowledge of the natural history of bradyarrhythmias and tachyarrhythmias, which may be treated optimally with device therapy; 2) there have been tremendous changes in the management of heart failure that involve both drug and device therapy; and 3) major advances in the technology of devices to treat, delay, and even prevent morbidity and mortality from bradyarrhythmias, tachyarrhythmias, and heart failure have occurred
    corecore