539 research outputs found
Manually defining regions of interest when quantifying paravertebral muscles fatty infiltration from axial magnetic resonance imaging : a proposed method for the lumbar spine with anatomical cross-reference
Background: There is increasing interest in paravertebral muscle composition as a potential prognostic and diagnostic element in lumbar spine health. As a consequence, it is becoming popular to use magnetic resonance imaging (MRI) to examine muscle volume and fatty infiltration in lumbar paravertebral muscles to assess both age-related change and their clinical relevance in low back pain (LBP). A variety of imaging methods exist for both measuring key variables (fat, muscle) and for defining regions of interest, making pooled comparisons between studies difficult and rendering post-production analysis of MRIs confusing. We therefore propose and define a method as an option for use as a standardized MRI procedure for measuring lumbar paravertebral muscle composition, and to stimulate discussion towards establishing consensus for the analysis of skeletal muscle composition amongst clinician researchers.
Method: In this descriptive methodological study we explain our method by providing an examination of regional lumbar morphology, followed by a detailed description of the proposed technique. Identification of paravertebral muscles and vertebral anatomy includes axial E12 sheet-plastinates from cadaveric material, combined with a series of axial MRIs that encompass sequencing commonly used for investigations of muscle quality (fat-water DIXON, T1-, and T2-weighted) to illustrate regional morphology; these images are shown for L1 and L4 levels to highlight differences in regional morphology. The method for defining regions of interest (ROI) for multifidus (MF), and erector spinae (ES) is then described.
Results: Our method for defining ROIs for lumbar paravertebral muscles on axial MRIs is outlined and discussed in relation to existing literature. The method provides a foundation for standardising the quantification of muscle quality that particularly centres on examining fatty infiltration and composition. We provide recommendations relating to imaging parameters that should additionally inform a priori decisions when planning studies examining lumbar muscle tissues with MRI.
Conclusions: We intend this method to provide a platform towards developing and delivering meaningful comparisons between MRI data on lumbar paravertebral muscle quality
Advancing imaging technologies for patients with spinal pain : with a focus on whiplash injury
Background: Radiological observations of soft-tissue changes that may relate to clinical symptoms in patients with traumatic and non-traumatic spinal disorders are highly controversial. Studies are often of poor quality and findings are inconsistent. A plethora of evidence suggests some pathoanatomical findings from traditional imaging applications are common in asymptomatic participants across the life span, which further questions the diagnostic, prognostic, and theranostic value of traditional imaging. Although we do not dispute the limited evidence for the clinical importance of most imaging findings, we contend that the disparate findings across studies may in part be due to limitations in the approaches used in assessment and analysis of imaging findings.
Purpose: This clinical commentary aimed to (1) briefly detail available imaging guidelines, (2) detail research-based evidence around the clinical use of findings from advanced, but available, imaging applications (eg, fat and water magnetic resonance imaging and magnetization transfer imaging), and (3) introduce how evolving imaging technologies may improve our mechanistic understanding of pain and disability, leading to improved treatments and outcomes.
Study Design/Setting: A non-systematic review of the literature is carried out.
Methods: A narrative summary (including studies from the authors' own work in whiplash injuries) of the available literature is provided.
Results: An emerging body of evidence suggests that the combination of existing imaging sequences or the use of developing imaging technologies in tandem with a good clinical assessment of modifiable risk factors may provide important diagnostic information toward the exploration and development of more informed and effective treatment options for some patients with traumatic neck pain.
Conclusions: Advancing imaging technologies may help to explain the seemingly disconnected spectrum of biopsychosocial signs and symptoms of traumatic neck pain
Change of sagittal spinal alignment and its association with pain and function after lumbar surgery augmented with an interspinous implant
Background: Interspinous spacer/implants like the Device for Intervertebral Assisted Motion (DIAMâ„¢) are controversially yet commonly used in the surgical treatment of lumbar degenerative pathologies. Criticism is based on ill-defined indications, lack of superiority over decompression, and a poorly understood mechanical effect. Yet, continued use by surgeons implies their perceived clinical merit. We examined radiographic spinal alignment for 12 months, and pain and function for 24 months, after DIAM-augmented surgery to improve the understanding of the mechanical effect relating to clinical outcomes in patients.
Methods: We undertook a single-surgeon prospective, longitudinal study of 40 patients (20 F, 20 M) who received DIAM-augmented surgery in treatment of their symptomatic lumbar degenerative condition. Outcomes measured included sagittal spinal alignment (lumbar lordosis, sacral inclination, primary (PDA), supradjacent (SDA) disc angles, and regional sagittal balance (RSB; standing lateral radiographs), and back and leg pain (visual analogue scale; VAS) and function (Oswestry Disability Index; ODI). Responders were identified as those with clinically meaningful improvement to pain (>20%) and function (>15%) at 24 months postoperatively; features of sagittal spinal alignment between responders and non-responders were examined.
Results: Sagittal alignment was unchanged at 12 months. At 6 weeks postoperatively, PDA (mean (SD)) reduced by 2.2° (4.0°; p < 0.01) and more-so in back pain non-responders (3.8° (3.2°)) than responders (0.7° (4.4°); p < 0.05). Positive preoperative RSB in responders (26.7Rmm (42.3Rmm); Rmm is a system-relative measure) decreased at 6 weeks (by 3.1Rmm (9.1Rmm)). Non-responders had a negative RSB preoperatively (−1.0Rmm (32.0Rmm)) and increased at 6 weeks (11.2Rmm (15.5Rmm); p < 0.05). Clinically meaningful improvement for the whole cohort for back pain and function were observed to 24 months (back pain: 25.0% (28.0); function: 15.4% (17.6); both p < 0.0001).
Conclusions: Unaltered sagittal alignment at 12 months was not related to symptoms after DIAM-augmented lumbar surgery. Subtle early flattening at the index disc angle was not maintained. Preoperative and early post-operative sagittal alignment may indicate response after DIAM-augmented surgery for mixed lumbar pathologies. Further investigation toward defining indications and patient suitability is warranted
Speciation in Duckweeds (Lemnaceae): Phylogenetic and Ecological Inferences
Species of duckweeds (Letnnaceae) that were resolved as sister taxa in a phylogeny based on combined molecular and non-molecular data were compared for morphological, physiological, and ecological attributes to infer factors important in the initial divergence leading to speciation. The ability to survive extreme conditions such as desiccation and cold temperatures is the most common difference identified between species. Two morphological characters facilitating survival in extreme environments are production of special resting buds called turions and increased seed production. The prevalent geographic pattern for species pairs consists of one restricted species occurring on the periphery of a more widespread taxon; this pattern indicates that divergence of peripheral isolates is a common geographical mode of speciation in duckweeds. Other species differ in optimal environmental conditions for growth, and these species are largely sympatric. In only one instance does it appear that divergence and speciation occurred following long-distance dispersal. Sympatric species pairs have the lowest molecular divergence; widespread primarily allopatric, and distantly allopatric species have the highest molecular divergence. Despite infrequent sexual reproduction, some degree of detectable variation (molecular, physiological, etc.) occurs within populations and among populations of the same species. Molecular evidence indicates that variation within duckweeds extends from the population and intraspecific levels to very different levels of divergence among recognized species. Contrary to the appearance of morphological and ecological uniformity implied by their reduced morphology and restricted occurrence in fresh water habitats, duckweeds are not a group in evolutionary stasis. Rather, these smallest of all flowering plants are dynamic evolutionarily, and comprise a model system for studying plant evolution and speciation
A comparison of post-saccadic oscillations in European-Born and China-Born British University Undergraduates
Previous research has revealed that people from different genetic, racial, biological, and/or cultural backgrounds may display fundamental differences in eye-tracking behavior. These differences may have a cognitive origin or they may be at a lower level within the neurophysiology of the oculomotor network, or they may be related to environment factors. In this paper we investigated one of the physiological aspects of eye movements known as post-saccadic oscillations and we show that this type of eye movement is very different between two different populations. We compared the post-saccadic oscillations recorded by a video-based eye tracker between two groups of participants: European-born and Chinese-born British students. We recorded eye movements from a group of 42 Caucasians defined as White British or White Europeans and 52 Chinese-born participants all with ages ranging from 18 to 36 during a prosaccade task. The post-saccadic oscillations were extracted from the gaze data which was compared between the two groups in terms of their first overshoot and undershoot. The results revealed that the shape of the post-saccadic oscillations varied significantly between the two groups which may indicate a difference in a multitude of genetic, cultural, physiologic, anatomical or environmental factors. We further show that the differences in the post-saccadic oscillations could influence the oculomotor characteristics such as saccade duration. We conclude that genetic, racial, biological, and/or cultural differences can affect the morphology of the eye movement data recorded and should be considered when studying eye movements and oculomotor fixation and saccadic behaviors
mtDNA Variation in Caste Populations of Andhra Pradesh, India.
Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance inelude (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15;p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.We would like to thank T. Jenkins, H. Soodyall, P. Nute, and J. Kidd for providing DNA samples and S. Austin, A. Comuzzie, R. Duggirala, R. Feldman, K. Lum, A. Rogers, and S. Watkins for technical advice, critical comments, and thoughtful discussion. This work was supported in part by the National Science Foundation through grant NSF-DBS-9211255, the Clinical Research Center at the University of Utah through grant NIH RR-00064, and the Technology Access Center of the Utah Human Genome Project
Environmental pH Affects Photoautotrophic Growth of Synechocystis sp. PCC 6803 Strains Carrying Mutations in the Lumenal Proteins of PSII.
Synechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.0, but not pH 7.5. We investigated the basis of this pH effect and observed no pH-specific change in variable fluorescence yield from PSII centers of the wild type or the pH-dependent ΔPsbO:ΔPsbU and ΔPsbV:ΔCyanoQ strains; however, 77 K fluorescence emission spectra indicated increased coupling of the phycobilisome (PBS) antenna at pH 10.0 in all mutants. DNA microarray data showed a cell-wide response to transfer from pH 10.0 to pH 7.5, including decreased mRNA levels of a number of oxidative stress-responsive transcripts. We hypothesize that this transcriptional response led to increased tolerance against reactive oxygen species and in particular singlet oxygen. This response enabled photoautotrophic growth of the PSII mutants at pH 10.0. This hypothesis was supported by increased resistance of all strains to rose bengal at pH 10.0 compared with pH 7.5
Effect of aging on post-saccadic oscillations
Recent research have shown that the eye movement data measured by an eye tracker does not necessarily reflect the exact rotations of the eyeball. For example, post-saccadic eye movements may be more reflecting the relative movements between the pupil and the iris rather than the eyeball oscillations. Since, accurate measurement of eye movements is important in many studies, it is crucial to identify different factors that influence the dynamics of the eye movements measured by an eye tracker. Previous studies have shown that deformation of the internal structure of the iris and size of the pupil directly affect the amplitude of the post-saccadic oscillations that are measured by video-based eye trackers that are pupil-based. In this paper, we look at the effect of aging on post-saccadic oscillations. We recorded eye movements from a group of 43 young and 22 older participants during an abstract and a more natural viewing task. The recording was conducted with a video-based eye tracker using the pupil center and corneal reflection. We anticipated that changes in the muscle strength as an effect of aging might affect, directly or indirectly, the post-saccadic oscillations. Results showed that the size of the post-saccadic oscillations were significantly larger for our older group. The results suggests that aging has to be considered as an important factor when studying the post-saccadic eye movements
The major brain cholesterol metabolite 24(s)-hydroxycholesterol is a potent allosteric modulator of N-methyl-d-aspartate receptors
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABA(A) receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 μm. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development
Blood Group Distribution in Switzerland - a Historical Comparison.
BACKGROUND
Ethnicities differ in prevalence of blood groups and antigens. Substantial donor-recipient mismatch within mixed-ethnic societies may render certain recipients at higher risk for alloimmunization. Data regarding antigen distribution within Switzerland by ethnicity is limited. We examined immigration patterns against the distribution of ABO blood groups using large cross-sectional Swiss samples spanning 70 years.
METHODS
Historical ABO blood group distribution data (1940-1945) from Swiss army personnel (n = 275,664) were sourced from the literature. Recent blood group phenotypes of 122,925 individuals who presented themselves at army recruitment centers (2004-2015) were obtained, alongside a validation sample of 175,202 patients from a university hospital. Two-sample tests with z-statistics assessing blood groups between samples were used.
RESULTS
The respective proportions of A (47.2% and 45.2%), B (8.4% and 9.8%), and AB (3.0 and 4.1) in the historical and recent army samples were significantly different (p < 0.001), while group O was not. Conclusion: ABO blood groups in Switzerland have remained stable despite substantial immigration with a changing foreign-national profile. Further research is needed to improve the understanding of antigen differences in newly introduced ethnic groups. Blood product requirements and public health initiatives aimed at recruiting blood donors would benefit from this information
- …