4 research outputs found

    Compatibility of mycorrhiza-induced resistance with viral and bacterial entomopathogens in the control of Spodoptera exigua in tomato

    No full text
    BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are soil-borne microorganisms that establish mutualistic associations with roots of most terrestrial plants. This symbiosis results in nutritional and defensive benefits to the host plant, usually conferring protection against biotic stresses, but its indirect impact on third trophic levels is still unknown. In the present work, we explore whether the symbiosis of tomato plants with Funneliformis mosseae (and/or exposition to herbivory) influences the interaction of the generalist pest Spodoptera exigua (Lepidoptera: Noctuidae) with bacterial (Bacillus thuringiensis) and viral (baculovirus, SeMNPV) natural entomopathogens. RESULTS: Symbiosis with AMF and previous herbivory reduces the relative growth of S. exigua, increases its susceptibility to a sublethal dose of B. thuringiensis and has positive or neutral impact on the lethality of SeMNPV. Reduction of the phenoloxidase activity, a marker of the insect immune response, was associated with the larval feeding on plant material previously exposed to herbivory but not to the AMF. In addition, no changes in the insect gut microbiota could be associated with the observed changes in larval growth and susceptibility to the entomopathogens. CONCLUSION: Our findings provide the first evidence of compatibility of AMF symbiosis in tomato with the use of bacterial and viral entomopathogens, contributing to the development of novel approaches to combine the beneficial effect of AMF and entomopathogens in biological pest control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.This work was supported by Grants RTI2018-094350-B-C32, RTI2018-094350-B-C31, PID2020-118787RA-100 and RED2018-102407-T funded by MCIN/AEI/10.13039/501100011033 and ERDF – A way of making Europe and the VIROPLANT project which has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 773567. AF was recipient of a PhD grant from the Spanish Ministry of Education (No. FPU16/02363). CMC was supported by a Generació Talent contract from Generalitat Valenciana (No. CDIGENT-2019-009)

    RNA interference in Lepidoptera: An overview of successful and unsuccessful

    No full text
    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiment

    RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design

    No full text
    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments
    corecore