31 research outputs found

    Use of materials in nest construction by Pied Flycatchers Ficedula hypoleuca reflects localised habitat and geographical location.

    Get PDF
    Capsule Pied Flycatchers use different materials to construct their nests according to localised habitat and geographical location. Aims This study tested the hypotheses that birds would use the leaves they normally encountered within their breeding territories and that nest composition varied between geographical locations. Methods In Lancashire, Pied Flycatcher nests were collected from nestboxes built in locations dominated by different tree species and were deconstructed to determine which materials were used. Results Materials found in nests generally reflected the localised habitat around the nest rather than showing evidence of active collection from distant sources of material. Nests from Lancashire were significantly different in composition when compared with published data for nests from north Wales and central Spain. The use of moss was dominated by the use of one species in all but two nests. Conclusion Pied Flycatchers exhibit plasticity in nest construction behaviour because they were opportunistic in their choice of most nesting materials although they may be selective in their choice of moss

    Conservation physiology and the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic and associated public health measures have had unanticipated effects on ecosystems and biodiversity. Conservation physiology and its mechanistic underpinnings are well positioned to generate robust data to inform the extent to which the Anthropause has benefited biodiversity through alterations in disturbance-, pollution- and climate change-related emissions. The conservation physiology toolbox includes sensitive biomarkers and tools that can be used both retroactively (e.g. to reconstruct stress in wildlife before, during and after lockdown measures) and proactively (e.g. future viral waves) to understand the physiological consequences of the pandemic. The pandemic has also created new risks to ecosystems and biodiversity through extensive use of various antimicrobial products (e.g. hand cleansers, sprays) and plastic medical waste. Conservation physiology can be used to identify regulatory thresholds for those products. Moreover, given that COVID-19 is zoonotic, there is also opportunity for conservation physiologists to work closely with experts in conservation medicine and human health on strategies that will reduce the likelihood of future pandemics (e.g. what conditions enable disease development and pathogen transfer) while embracing the One Health concept. The conservation physiology community has also been impacted directly by COVID-19 with interruptions in research, training and networking (e.g. conferences). Because this is a nascent discipline, it will be particularly important to support early career researchers and ensure that there are recruitment pathways for the next generation of conservation physiologists while creating a diverse and inclusive community. We remain hopeful for the future and in particular the ability of the conservation physiology community to deliver relevant, solutions-oriented science to guide decision makers particularly during the important post-COVID transition and economic recovery

    Skunk River Review 2010-11, vol 23

    Get PDF
    Welcome to the 2010-2011 edition of The Skunk River Review! As the new editor of this publication, I was excited to see the number of submissions and the overwhelming enthusiasm of the students. This year\u27s publication includes work from Composition I, Composition II, Literature, and College Resources courses. Whereas The Skunk River Review is academic work that begins in the classroom, it also reflects student\u27s interests. The essays are not edited for MLA format or general errors because the publication is used as a teaching tool in many classrooms.https://openspace.dmacc.edu/skunkriver/1002/thumbnail.jp

    One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice

    Get PDF
    Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: Reflections and a horizon scan

    Get PDF
    Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has becomecommonplace and confers an ability to understand mechanistic processes,develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of \u27success stories\u27 is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative.Using a \u27horizon scan\u27,we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), aswell as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmentalmanagementand ecosystemrestoration,we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users

    The use of group dynamics strategies to enhance cohesion in a lifestyle intervention program for obese children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most research pertaining to childhood obesity has assessed the effectiveness of preventative interventions, while relatively little has been done to advance knowledge in the treatment of obesity. Thus, a 4-week family- and group-based intervention utilizing group dynamics strategies designed to increase cohesion was implemented to influence the lifestyles and physical activity levels of obese children.</p> <p>Methods/Design</p> <p>This paper provides an overview of the rationale for and implementation of the intervention for obese children and their families. Objectives of the intervention included the modification of health behaviors and cohesion levels through the use of group dynamics strategies. To date, a total of 15 children (7 boys and 8 girls, mean age = 10.5) and their families have completed the intervention (during the month of August 2008). Physiological and psychological outcomes were assessed throughout the 4-week intervention and at 3-, 6-, and 12-month follow-up periods.</p> <p>Discussion</p> <p>It is believed that the information provided will help researchers and health professionals develop similar obesity treatment interventions through the use of evidence-based group dynamics strategies. There is also a need for continued research in this area, and it is our hope that the Children's Health and Activity Modification Program (C.H.A.M.P.) will provide a strong base from which others may build.</p

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan

    Get PDF
    Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become common place and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmenta lmanagement and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users

    Lifestyle modification and metformin as long-term treatment options for obese adolescents: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood obesity is a serious health concern affecting over 155 million children in developed countries worldwide. Childhood obesity is associated with significantly increased risk for development of type 2 diabetes, cardiovascular disease and psychosocial functioning problems (i.e., depression and decreased quality of life). The two major strategies for management of obesity and associated metabolic abnormalities are lifestyle modification and pharmacologic therapy. This paper will provide the background rationale and methods of the REACH childhood obesity treatment program.</p> <p>Methods/design</p> <p>The REACH study is a 2-year multidisciplinary, family-based, childhood obesity treatment program. Seventy-two obese adolescents (aged 10-16 years) and their parents are being recruited to participate in this randomized placebo controlled trial. Participants are randomized to receive either metformin or placebo, and are then randomized to a moderate or a vigorous intensity supervised exercise program for the first 12-weeks. After the 12-week exercise program, participants engage in weekly exercise sessions with an exercise facilitator at a local community center. Participants engage in treatment sessions with a dietitian and social worker monthly for the first year, and then every three months for the second year. The primary outcome measure is change in body mass index and the secondary outcome measures are changes in body composition, risk factors for type 2 diabetes and cardiovascular disease, changes in diet, physical activity, and psychosocial well-being (e.g., quality of life). It is hypothesized that participants who take metformin and engage in vigorous intensity exercise will show the greatest improvements in body mass index. In addition, it is hypothesized that participants who adhere to the REACH program will show improvements in body composition, physical activity, diet, psychosocial functioning and risk factor profiles for type 2 diabetes and cardiovascular disease. These improvements are expected to be maintained over the 2-year program.</p> <p>Discussion</p> <p>The findings from this study will advance the knowledge regarding the long-term efficacy and sustainability of interventions for childhood obesity.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov number NCT00934570</p
    corecore