7,810 research outputs found

    Parametric instabilities in magnetized multicomponent plasmas

    Full text link
    This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The excitation is provided by parametrically pumping the magnetic field. Here two ion-like species are allowed to be fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary. Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves. We firstly investigate the pump wave in detail, in the case where the background magnetic field is perpendicular to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14 pages, 8 figure

    Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture

    Full text link
    Crack propagation is studied numerically using a continuum phase-field approach to mode III brittle fracture. The results shed light on the physics that controls the speed of accelerating cracks and the characteristic branching instability at a fraction of the wave speed.Comment: 11 pages, 4 figure

    Diagnostic criteria for grading the severity of acute motion sickness

    Get PDF
    Diagnostic criteria for grading severity of acute motion sicknes

    New CP-violation and preferred-frame tests with polarized electrons

    Get PDF
    We used a torsion pendulum containing 9×1022\sim 9 \times 10^{22} polarized electrons to search for CP-violating interactions between the pendulum's electrons and unpolarized matter in the laboratory's surroundings or the sun, and to test for preferred-frame effects that would precess the electrons about a direction fixed in inertial space. We find gPegSN/(c)<1.7×1036|g_{\rm P}^e g_{\rm S}^N|/(\hbar c)< 1.7 \times 10^{-36} and gAegVN/(c)<4.8×1056|g_{\rm A}^e g_{\rm V}^N|/(\hbar c) < 4.8 \times 10^{-56} for λ>1\lambda > 1AU. Our preferred-frame constraints, interpreted in the Kosteleck\'y framework, set an upper limit on the parameter b~e5.0×1021|\bm{\tilde {b}}^e| \leq 5.0 \times 10^{-21} eV that should be compared to the benchmark value me2/MPlanck=2×1017m_e^2/M_{\rm Planck}= 2 \times 10^{-17} eV.Comment: 4 figures, accepted for publication in Physical Review Letter

    Multi-Objective Gust Load Alleviation Control Designs for an Aeroelastic Wind Tunnel Demonstration Wing

    Get PDF
    This paper presents several control and gust disturbance estimation techniques applied to a mathematical model of a physical flexible wing wind tunnel model used in ongoing tests at the University of Washington Aeronautical Laboratory's Kirsten Wind Tunnel. Three methods of gust disturbance estimation are presented, followed by three control methods: LQG, Basic Multi-Objective (BMO), and a novel Multi-Objective Prediction Correction (MOPC) controller. The latter of which augments a multi-objective controller, and attempts to correct for errors in the disturbance estimate. A simplified linear simulation of the three controllers is performed and a simple MIMO stability and robustness assessment is performed. Then, the same controllers are simulated in a higher fidelity Simulink environment that captures sampling, saturation and noise effects. This preliminary analysis indicates that the BMO controller provides the best performance and largest stability margins

    Parametric instability in dark molecular clouds

    Get PDF
    The present work investigates the parametric instability of parallel propagating circularly polarized Alfven(pump) waves in a weakly ionized molecular cloud. It is shown that the relative drift between the plasma particles gives rise to the Hall effect resulting in the modified pump wave characteristics. Although the linearized fluid equations with periodic coefficients are difficult to solve analytically, it is shown that a linear transformation can remove the periodic dependence. The resulting linearized equations with constant coefficients are used to derive an algebraic dispersion relation. The growth rate of the parametric instability is a sensitive function of the amplitude of the pump wave as well as to the ratio of the pump and the modified dust-cyclotron frequencies. The instability is insensitive to the plasma-beta The results are applied to the molecular clouds.Comment: 27 page, 5 figures, accepted in Ap

    Knives and the Second Amendment

    Get PDF
    This Article is the first scholarly analysis of knives and the Second Amendment. Under the Supreme Court’s standard in District of Columbia v. Heller, knives are Second Amendment “arms” because they are “typically possessed by law-abiding citizens for lawful purposes,” including self-defense. There is no knife that is more dangerous than a modern handgun; to the contrary, knives are much less dangerous. Therefore, restrictions on carrying handguns set the upper limit for restrictions on carrying knives. Prohibitions on carrying knives in general, or of particular knives, are unconstitutional. For example, bans of knives that open in a convenient way (e.g., switchblades, gravity knives, and butterfly knives) are unconstitutional. Likewise unconstitutional are bans on folding knives that, after being opened, have a safety lock to prevent inadvertent closure

    Non-malleable encryption: simpler, shorter, stronger

    Get PDF
    In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit

    Using the Uncharged Kerr Black Hole as a Gravitational Mirror

    Get PDF
    We extend the study of the possibility to use the Schwarzschild black hole as a gravitational mirror to the more general case of an uncharged Kerr black hole. We use the null geodesic equation in the equatorial plane to prove a theorem concerning the conditions the impact parameter has to satisfy if there shall exist boomerang photons. We derive an equation for these boomerang photons and an equation for the emission angle. Finally, the radial null geodesic equation is integrated numerically in order to illustrate boomerang photons.Comment: 11 pages Latex, 3 Postscript figures, uufiles to compres
    corecore