222 research outputs found
Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering
Abstract. Traditionally, secure cryptographic algorithms provide security against an adversary who has only black-box access to the secret information of honest parties. However, such models are not always adequate. In particular, the security of these algorithms may completely break under (feasible) attacks that tamper with the secret key. In this paper we propose a theoretical framework to investigate the algorithmic aspects related to tamper-proof security. In particular, we define a model of security against an adversary who is allowed to apply arbitrary feasible functions f to the secret key sk, and obtain the result of the cryptographic algorithms using the new secret key f(sk). We prove that in the most general setting it is impossible to achieve this strong notion of security. We then show minimal additions to the model, which are needed in order to obtain provable security. We prove that these additions are necessary and also sufficient for most common cryptographic primitives, such as encryption and signature schemes. We discuss the applications to portable devices protected by PINs and show how to integrate PIN security into the generic security design. Finally we investigate restrictions of the model in which the tampering powers of the adversary are limited. These restrictions model realistic attacks (like differential fault analysis) that have been demonstrated in practice. In these settings we show security solutions that work even without the additions mentioned above
Persistent late permian to early triassic warmth linked to enhanced reverse weathering
In the Precambrian, reverse weathering—a process consuming oceanic silica, metal cations and alkalinity to form marine clays—was a key control of the long-term carbon cycle. However, the appearance of marine silicifiers decreased the importance of this process in regulating climate in the Phanerozoic eon. Here, we present seawater lithium and strontium isotope records derived from bulk carbonates and fossil brachiopods spanning the Permian to Early Triassic, an interval of pronounced climatic fluctuations and widespread extinctions. We show that the lithium isotope composition of seawater remained constant for most of the Permian until a sharp decrease in the Late Permian (~254 Myr ago) with low seawater Li isotope values (~10‰) persisting throughout the Early Triassic. Based on box modelling, changes in chemical weathering and hydrothermal fluxes are unable to explain the abrupt decline in seawater Li isotopes. Rather, increased lithium output fluxes through enhanced reverse weathering are required to produce the low Li isotope values of the Late Permian and Early Triassic (253–247 Myr ago). Increased reverse weathering rates could explain the failure of chemical weathering to draw down atmospheric CO2 levels during the Early Triassic, leading to protracted biotic recovery from the Permian–Triassic mass extinction
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy at RHIC: the first and fourth harmonics
We report the first observations of the first harmonic (directed flow, v_1),
and the fourth harmonic (v_4), in the azimuthal distribution of particles with
respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion
Collider (RHIC). Both measurements were done taking advantage of the large
elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it
is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data
tables are at
http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Increased Resilience in Threshold Cryptography: Sharing a Secret with Devices That Cannot Store Shares
Threshold cryptography has been used to secure data and control access by sharing a private cryptographic key over different devices. This means that a minimum number of these devices, the threshold , need to be present to use the key. The benefits are increased security, because an adversary can compromise up to devices, and resilience, since any subset of devices is sufficient.
Many personal devices are not suitable for threshold schemes, because they do not offer secure storage, which is needed to store shares of the private key. This article presents several protocols in which shares are stored in protected form (possibly externally). This makes them suitable for low-cost devices with a factory-embedded key, e.g., car keys and access cards. All protocols are verifiable through public broadcast, thus without private channels. In addition, distributed key generation does not require all devices to be present
On the Portability of Generalized Schnorr Proofs
All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately
Mid-rapidity anti-proton to proton ratio from Au+Au collisions at GeV
We report results on the ratio of mid-rapidity anti-proton to proton yields
in Au+Au collisions at \rts = 130 GeV per nucleon pair as measured by the
STAR experiment at RHIC. Within the rapidity and transverse momentum range of
and 0.4 1.0 GeV/, the ratio is essentially independent of
either transverse momentum or rapidity, with an average of for minimum bias collisions. Within errors, no
strong centrality dependence is observed. The results indicate that at this
RHIC energy, although the -\pb pair production becomes important at
mid-rapidity, a significant excess of baryons over anti-baryons is still
present.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let
Strange anti-particle to particle ratios at mid-rapidity in sqrt(s_NN)= 130 GeV Au+Au Collisions
Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71
+/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05
(sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092
+/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au
collisions using the STAR detector. The ratios indicate that a fraction of the
net-baryon number from the initial system is present in the excess of hyperons
over anti-hyperons at mid-rapidity. The trend in the progression of the baryon
ratios, with increasing strange quark content, is similar to that observed in
heavy-ion collisions at lower energies. The value of these ratios may be
related to the charged kaon ratio in the framework of simple quark-counting and
thermal models.Comment: 6 pages, 3 figures, revtex4, now accepted by Physics Letters B. All
figures improved for clarity, fig. 2 now has kaon ratio separated by
technique, fig. 3 now has additional other RHIC data points. Minor
clarifications in text in response to referee comments. Updated ref
- …