20,853 research outputs found

    Chiral discrimination in optical binding

    Get PDF
    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported

    On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces

    Get PDF
    Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics

    Revised reference model for nitric acid

    Get PDF
    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter

    Fear of Crime, Incivilities, and Collective Efficacy in Four Miami Neighborhoods

    Get PDF
    Purpose: Extant literature indicates that individual perceptions of collective efficacy and incivilities are important in explaining fear of crime. These studies, however, often implicitly assume that the relationships between key variables do not differ between neighborhoods. The purpose of this research is to examine the relationship between perceptions of collective efficacy, perceptions of incivilities, and fear of crime and determine whether these relationships are constant between neighborhoods. Methods: Surveys were conducted using a sample of residents from four neighborhoods within Miami-Dade County. Structural equation models were used to examine the relationships between perceptions of collective efficacy, perceptions of incivilities, and fear of crime for each neighborhood separately. Tests for invariance were conducted to determine whether the coefficients from these models differed across neighborhoods. Results: Results from these analyses suggest that the relationship between perceptions of collective efficacy and fear of crime exhibit significant heterogeneity between neighborhoods, as do a number of other relationships. The relationships between perceptions of collective efficacy and perceptions of incivilities, and perceptions of incivilities and fear of crime do not exhibit heterogeneity. Conclusions: These results illustrate the importance of examining perceptions of collective efficacy within the neighborhood context. Implications for policy and future research are discusse

    Quantum channels in nonlinear optical processes

    Get PDF
    Quantum electrodynamics furnishes a new type of representation for the characterisation of nonlinear optical processes. The treatment elicits the detailed role and interplay of specific quantum channels, information that is not afforded by other methods. Following an illustrative application to the case of Rayleigh scattering, the method is applied to second and third harmonic generation. Derivations are given of parameters that quantify the various quantum channels and their interferences; the results are illustrated graphically. With given examples, it is shown in some systems that optical nonlinearity owes its origin to an isolated channel, or a small group of channels. © 2009 World Scientific Publishing Company

    Electric field control and optical signature of entanglement in quantum dot molecules

    Full text link
    The degree of entanglement of an electron with a hole in a vertically coupled self-assembled dot molecule is shown to be tunable by an external electric field. Using atomistic pseudopotential calculations followed by a configuration interaction many-body treatment of correlations, we calculate the electronic states, degree of entanglement and optical absorption. We offer a novel way to spectroscopically detect the magnitude of electric field needed to maximize the entanglement.Comment: 4 pages, 6 figure
    • …
    corecore