2,521 research outputs found

    The Red-Cockaded Woodpecker Cavity Tree: A Very Special Pine

    Get PDF
    The adaptation of red-cockaded woodpeckers (Picoides borealis) to fire-maintained southern pine ecosystems has included the development of behaviors that permit the species to use living pines for their cavity trees. Their adaptation to pine ecosystems has also involved a major adjustment in the species\u27 breeding system to cooperative breeding, probably in response to the extended time period required to excavate a completed cavity in a living pine and the relative rarity of completed cavities for nesting. The characteristics of live pines make them variable in their suitability as cavity trees, leading to the evolution of selection behavior among woodpeckers. Red-cockaded woodpeckers require a very special type of pine for their cavity tree. Potential cavity trees must be sufficiently old because only older pines have heartwood of sufficient diameter to physically house a woodpecker cavity without breaching the resin producing sapwood. Older pines also have a larger diameter of heartwood higher in the pine, permitting higher cavity placement, well away from frequent fires. Older pines also have a higher occurrence rate of red heart fungus (Phellinus pini), which decays the heartwood allowing cavity excavation to proceed more quickly. The potential cavity tree also needs to have relatively thin sapwood, which reduces the time the woodpecker must spend excavating through living xylem tissue that exudes sticky pine resin when pecked. Red-cockaded woodpeckers scale loose bark from the bole of their cavity trees and excavate resin wells above and below cavity entrances. These behaviors create a resin barrier that is very effective in deterring predation by rat snakes (Elaphe spp.). Thus, the ability of pines to produce adequate resin is also important to the woodpecker. Red-cockaded wood- peckers can detect the pine\u27s ability to produce resin and select pines that are high producers. Higher yields of resin likely create better barriers against rat snakes. The socially dominant breeding male red-cockaded woodpecker selects the cavity tree that produces the most resin for its roost tree, which during spring becomes the group\u27s nest tree. Our recent research suggests that red-cockaded woodpeckers also select pines with particular resin chemistries. High concentrations of diterpenes may increase resin viscosity, stickiness, irritability, or other factors that may be important for creating a barrier against rat snakes

    Genome Sequence of \u3ci\u3eStreptomyces aureofaciens\u3c/i\u3e ATCC Strain 10762

    Get PDF
    Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlortetracycline. Here, we report the assembly and initial annotation of the draft genome sequence of S. aureofaciens ATCC strain 10762

    From vocational training to education: the development of a no-frontiers education policy for Europe?

    Get PDF
    This article focuses on developments towards an EU educational policy. Education was not included as one of the Community competencies in the Treaty of Rome. The first half of the article analyses the way that the European Court of Justice and the Commission of the European Communities between them managed to develop a series of substantial Community programmes out of Article 128 on vocational training. The second half of the article discusses educational developments in the community following the Treaty on European Union and the Treaty of Amsterdam. Whilst the legal competence of the community now includes education, the author's argument is that the inclusion of an educational competence will not result in further developments to mirror those in the years before the Treaty on Europe</p

    Genome Sequence of \u3ci\u3eStreptomyces aureofaciens\u3c/i\u3e ATCC Strain 10762

    Get PDF
    Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlortetracycline. Here, we report the assembly and initial annotation of the draft genome sequence of S. aureofaciens ATCC strain 10762

    Elevated atmospheric CO2 suppresses silicon accumulation and exacerbates endophyte reductions in plant phosphorus

    Get PDF
    Many temperate grasses are both hyper-accumulators of silicon (Si) and hosts of Epichloë fungal endophytes, functional traits which may alleviate environmental stresses such as herbivore attack. Si accumulation and endophyte infection may operate synergistically, but this has not been tested in a field setting, nor in the context of changing environmental conditions. Predicted increases in atmospheric CO2 concentrations can affect both Si accumulation and endophyte function, but these have not been studied in combination. We investigated how elevated atmospheric CO2 (eCO2), Si supplementation, endophyte-presence and insect herbivory impacted plant growth, stoichiometry (C, N, P and Si), leaf gas exchange (rates of photosynthesis, stomatal conductance, transpiration rates) and endophyte production of anti-herbivore defences (alkaloids) of an important pasture grass (tall fescue; Lolium arundinaceum) in the field. eCO2 and Si supplementation increased shoot biomass (+52% and +31%, respectively), whereas herbivory reduced shoot biomass by at least 35% and induced Si accumulation by 24%. Shoot Si concentrations, in contrast, decreased by 17%–21% under eCO2. Si supplementation and herbivory reduced shoot C concentrations. eCO2 reduced shoot N concentrations which led to increased shoot C:N ratios. Overall, shoot P concentrations were 26% lower in endophytic plants compared to non-endophytic plants, potentially due to decreased mass flow (i.e. observed reductions in stomatal conductance and transpiration). Alkaloid production was not discernibly affected by any experimental treatment. The negative impacts of endophytes on P uptake were particularly strong under eCO2. We show that eCO2 and insect herbivory reduce and promote Si accumulation, respectively, incorporating some field conditions for the first time. This indicates that these drivers operate in a more realistic ecological context than previously demonstrated. Reduced uptake of P in endophytic plants may adversely affect plant productivity in the future, particularly if increased demand for P due to improved plant growth under eCO2 cannot be met. Read the free Plain Language Summary for this article on the Journal blog. © 2023 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society

    Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock

    Full text link
    Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2?h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300?mg/kg, n?=?5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis? (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p?Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140171/1/neu.2015.4163.pd

    Patient Care in High-Level Containment Care Units: In a Resourced Setting

    Get PDF
    Vasa, A., Boulter, K., Horihan, Cates, D., Piquette, C., Sullivan, J., Johnson, D, & Hewlett, A. (2019). Patient Care in High-Level Containment Care Units. In T. Cieslak, M. Kortepeter, C. Kratochvil, & J. Lawler (Eds.), Nebraska Isolation and Quarantine Manual (pp. 87-101). Lincoln, NE: University of Nebraska Press.https://digitalcommons.unmc.edu/nm_books/1000/thumbnail.jp
    corecore