78 research outputs found

    Feasibility of Using Saltcedar as a Filler in Injection-Molded Polyethylene Composites

    Get PDF
    Saltcedar (Tamarix ramosissima) was investigated for use as a filler in wood-plastic composites (WPCs). The mineral content, water-soluble extractive content, and thermal stability of saltcedar flour were compared with those of a commercial pine wood flour. The wood flours were compounded with plastic, and the viscosities of the composite melts containing the two species were compared. Injection-molded composites produced from the compounded material were evaluated for mechanical performance and weatherability. Saltcedar flour had more minerals and water-soluble extractives than pine flour, which resulted in lower thermal stability, but also lower melt viscosity when compounded with high-density polyethylene. Injection-molded WPCs made from unextracted saltcedar performed similarly to those made from pine in accelerated weathering tests, but their mechanical properties were generally lower. The flexural modulus of elasticity increased when extracted wood flour was used, especially for the saltcedar composites. However, color stability and flexural strength changed little. Producing WPCs from these composites is possible, although economically feasible applications that use the advantageous properties of these species and that can tolerate or address the less desirable ones need to be identified and demonstrated

    Density Range of Compression-Molded Polypropylene-Wood Composites

    Get PDF
    Wood and polypropylene fibers were mixed together in various proportions and compression-molded to boards of various specific gravities. The full theoretical specific gravity range could not be obtained even when the boards were cooled in the press. Voids surrounding the wood fibers possibly were due to the shrinkage of the wood fiber following pressing. Bending and tension properties were influenced more by the compression of the wood fibers than by the percentage of wood fiber addition

    Waste-Wood-Derived Fillers for Plastics

    Get PDF
    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper fiber, are also effective as fillers. The goal of this project was to generate commercial interest in using waste-wood–paper-derived fillers (WPFs) to reinforce thermoplastics. The research strategy was twofold: developmental research and outreach. Specific objectives were (1) to improve wastepaper fiber preparation, feeding, and compounding methods, and optimize composite performance, and (2) to communicate to end-product manufacturers the advantages of WPF thermoplastics. The research was led and supported by the Forest Products Laboratory (FPL), with input from a consortium of 15 fiber suppliers and plastics manufacturers. Additional funding was provided by the Wisconsin Department of Natural Resources. Equipment was leased and installed at FPL. Eight general purpose formulations were developed—they included extrusion and injection molding grades of both polyethylene and polypropylene, reinforced with WPFs. An information packet containing performance data, appropriate processing conditions, sample pellets, sample parts, and a questionnaire was sent to nearly 500 commercial plastics manufacturers in Wisconsin, Illinois, and Michigan. In response to requests for in-house trials, FPL researchers conducted nearly 18 site visits. The researchers ensured proper handling of the material, provided consultation, and gathered information about processing and performance. The trials went very well, and parts were successfully manufactured at all facilities. Products included automobile trim components and housings, vacuum cleaner parts, paint brush handles, bicycle parts, cosmetic cases, and other household items. Great interest has been shown in the use of WPF thermoplastics; one consortium member is establishing a 4 million kg/yr (9 million lb/yr) facility. Total market demand is conservatively expected to exceed 45 million kg/yr (100 million lb/yr)

    Towards the scalable isolation of cellulose nanocrystals from tunicates

    Get PDF
    ABSTRACT: In order for sustainable nanomaterials such as cellulose nanocrystals (CNCs) to be utilized in industrial applications, a large-scale production capacity for CNCs must exist. Currently the only CNCs available commercially in kilogram scale are obtained from wood pulp (W-CNCs). Scaling the production capacity of W-CNCs isolation has led to their use in broader applications and captured the interest of researchers, industries and governments alike. Another source of CNCs with potential for commercial scale production are tunicates, a species of marine animal. Tunicate derived CNCs (T-CNCs) are a high aspect ratio CNC, which can complement commercially available W-CNCs in the growing global CNC market. Herein we report the isolation and characterization of T-CNCs from the tunicate Styela clava, an invasive species currently causing significant harm to local aquaculture communities. The reported procedure utilizes scalable CNC processing techniques and is based on our experiences from laboratory scale T-CNC isolation and pilot scale W-CNC isolation. To our best knowledge, this study represents the largest scale where T-CNCs have been isolated from any tunicate species, under any reaction conditions. Demonstrating a significant step towards commercial scale isolation of T-CNCs, and offering a potential solution to the numerous challenges which invasive tunicates pose to global aquaculture communities

    Bartonella species detection in captive, stranded and free-ranging cetaceans

    Get PDF
    We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern

    Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes

    Get PDF
    Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments
    • …
    corecore