32 research outputs found

    From Tank to Treatment: Modeling Melanoma in Zebrafish

    Get PDF
    Melanoma is the deadliest form of skin cancer and one of few cancers with a growing incidence. A thorough understanding of its pathogenesis is fundamental to developing new strategies to combat mortality and morbidity. Zebrafish-due in large part to their tractable genetics, conserved pathways, and optical properties-have emerged as an excellent system to model melanoma. Zebrafish have been used to study melanoma from a single tumor initiating cell, through metastasis, remission, and finally into relapse. In this review, we examine seminal zebrafish studies that have advanced our understanding of melanoma

    Screening for melanoma modifiers using a zebrafish autochthonous tumor model

    Get PDF
    Genomic studies of human cancers have yielded a wealth of information about genes that are altered in tumors. A challenge arising from these studies is that many genes are altered, and it can be difficult to distinguish genetic alterations that drove tumorigenesis from that those arose incidentally during transformation. To draw this distinction it is beneficial to have an assay that can quantitatively measure the effect of an altered gene on tumor initiation and other processes that enable tumors to persist and disseminate. Here we present a rapid means to screen large numbers of candidate melanoma modifiers in zebrafish using an autochthonous tumor model that encompasses steps required for melanoma initiation and maintenance. A key reagent in this assay is the miniCoopR vector, which couples a wild-type copy of the mitfa melanocyte specification factor to a Gateway recombination cassette into which candidate melanoma genes can be recombined. The miniCoopR vector has a mitfa rescuing minigene which contains the promoter, open reading frame and 3\u27-untranslated region of the wild-type mitfa gene. It allows us to make constructs using full-length open reading frames of candidate melanoma modifiers. These individual clones can then be injected into single cell Tg(mitfa:BRAF(V600E));p53(lf);mitfa(lf) zebrafish embryos. The miniCoopR vector gets integrated by Tol2-mediated transgenesis and rescues melanocytes. Because they are physically coupled to the mitfa rescuing minigene, candidate genes are expressed in rescued melanocytes, some of which will transform and develop into tumors. The effect of a candidate gene on melanoma initiation and melanoma cell properties can be measured using melanoma-free survival curves, invasion assays, antibody staining and transplantation assays

    Identification of GDF-6 blocking antibodies as anti-melanoma therapeutics

    Get PDF
    Through comparative oncogenomic studies and functional analyses, we have identified the bone morphogenetic protein (BMP) factor GDF6 as a new melanoma oncogene. The secreted, carboxy-terminal portion of GDF6 is the active form that binds to cell-surface receptors to initiate BMP signaling. Targeted antibodies directed against secreted proteins are a proven therapeutic modality in several diseases. To develop therapeutic antibodies against the active form of GDF6, we generated a panel of monoclonal antibodies. Due to the high similarity of human and mouse GDF6 proteins, the C-terminal GDF6 protein was expressed as bacterial recombinant protein with fusion tags to enhance immunogenicity. The Expresso Screening System (Lucigen) was used to select fusion tags, and MBP and SlyD were chosen for optimal protein solubility and purification recovery. Ten CD1 mice were immunized with GDF6-MBP fusion protein and robust immune responses were observed in all animals after 5 immunizations. Animals were sacrificed for hybridoma fusion, and hybridoma clones were screened by ELISA using GDF6-SlyD fusion protein to select clones with specific binding activity to GDF6. Over 70 monoclonal antibodies were identified with strong reactivity to GDF6, and a subset has been shown to recognize the endogenous, secreted form of GDF6 via western blot. These antibodies will be screened for their activity to block GDF6 binding to melanoma cells and ability to inhibit downstream signaling using both in vitro assays and in vivo xenograft models

    Single-Cell Transcriptional Analysis of Normal, Aberrant, and Malignant Hematopoiesis in Zebrafish

    Get PDF
    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia

    Hematopoietic Stem Cell Development Is Dependent on Blood Flow

    Get PDF
    SummaryDuring vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development
    corecore