695 research outputs found

    Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton.

    Get PDF
    Primers targeting the 16S small subunit ribosomal RNA marker gene, used to characterize bacterial and archaeal communities, have recently been re-evaluated for marine planktonic habitats. To investigate whether primer selection affects the ecological interpretation of bacterioplankton populations and community dynamics, amplicon sequencing with four primer sets targeting several hypervariable regions of the 16S rRNA gene was conducted on both mock communities constructed from cloned 16S rRNA genes and a time-series of DNA samples from the temperate coastal Santa Barbara Channel. Ecological interpretations of community structure (delineation of depth and seasonality, correlations with environmental factors) were similar across primer sets, while population dynamics varied. We observed substantial differences in relative abundances of taxa known to be poorly resolved by some primer sets, such as Thaumarchaeota and SAR11, and unexpected taxa including Roseobacter clades. Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundances of the OTUs were nonetheless strongly correlated. We do not endorse one primer set but rather enumerate strengths and weaknesses to facilitate selection appropriate to a system or experimental goal. While 16S rRNA gene primer bias suggests caution in assessing quantitative population dynamics, community dynamics appear robust across studies using different primers

    Elevated pCO2 enhances bacterioplankton removal of organic carbon.

    Get PDF
    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000-1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 -~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean

    Dissolved organic matter in the ocean : a controversy stimulates new insights

    Get PDF
    Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 202-211.Containing as much carbon as the atmosphere, marine dissolved organic matter is one of Earth’s major carbon reservoirs. With invigoration of scientific inquiries into the global carbon cycle, our ignorance of its role in ocean biogeochemistry became untenable. Rapid mobilization of relevant research two decades ago required the community to overcome early false leads, but subsequent progress in examining the global dynamics of this material has been steady. Continuous improvements in analytical skill coupled with global ocean hydrographic survey opportunities resulted in the generation of thousands of measurements throughout the major ocean basins. Here, observations and model results provide new insights into the large-scale variability of dissolved organic carbon, its contribution to the biological pump, and its deep ocean sinks.The US National Science Foundation supported this work under grants OCE 0752972 to DAH and CAC, OCE 0751733 and BIO 0792384 to DJR. The Gordon and Betty Moore Foundation also provided support to DJR

    Influence of coral and algal exudates on microbially mediated reef metabolism.

    Get PDF
    Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs

    Modeling the mechanical response of polycrystals deforming by climb and glide

    Get PDF
    This paper presents a crystallographically-based constitutive model of a single crystal deforming by climb and glide. The proposed constitutive law is an extension of the rate-sensitivity approach for single crystal plasticity by dislocation glide. Based on this description at single crystal level, a homogenization-based polycrystal model for aggregates deforming in a climb-controlled thermal creep regime is developed. To illustrate the capabilities of the proposed model, we present calculations of effective behavior of olivine and texture evolution of aluminum at warm temperature and low strain rate. In both cases, the addition of climb as a complementary single-crystal deformation mechanism improves the polycrystal model predictions

    Neurogenesis Deep Learning

    Full text link
    Neural machine learning methods, such as deep neural networks (DNN), have achieved remarkable success in a number of complex data processing tasks. These methods have arguably had their strongest impact on tasks such as image and audio processing - data processing domains in which humans have long held clear advantages over conventional algorithms. In contrast to biological neural systems, which are capable of learning continuously, deep artificial networks have a limited ability for incorporating new information in an already trained network. As a result, methods for continuous learning are potentially highly impactful in enabling the application of deep networks to dynamic data sets. Here, inspired by the process of adult neurogenesis in the hippocampus, we explore the potential for adding new neurons to deep layers of artificial neural networks in order to facilitate their acquisition of novel information while preserving previously trained data representations. Our results on the MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes lower and upper case letters and digits, demonstrate that neurogenesis is well suited for addressing the stability-plasticity dilemma that has long challenged adaptive machine learning algorithms.Comment: 8 pages, 8 figures, Accepted to 2017 International Joint Conference on Neural Networks (IJCNN 2017

    Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, S., Parsons, R., Opalk, K., Baetge, N., Giovannoni, S., Bolanos, L. M., Kujawinski, E. B., Longnecker, K., Lu, Y., Halewood, E., & Carlson, C. A. Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea. Limnology and Oceanography, (2020), doi:10.1002/lno.11405.Marine dissolved organic matter (DOM) varies in its recalcitrance to rapid microbial degradation. DOM of varying recalcitrance can be exported from the ocean surface to depth by subduction or convective mixing and oxidized over months to decades in deeper seawater. Carboxyl‐rich alicyclic molecules (CRAM) are characterized as a major component of recalcitrant DOM throughout the oceanic water column. The oxidation of CRAM‐like compounds may depend on specific bacterioplankton lineages with oxidative enzymes capable of catabolizing complex molecular structures like long‐chain aliphatics, cyclic alkanes, and carboxylic acids. To investigate the interaction between bacteria and CRAM‐like compounds, we conducted microbial remineralization experiments using several compounds rich in carboxyl groups and/or alicyclic rings, including deoxycholate, humic acid, lignin, and benzoic acid, as proxies for CRAM. Mesopelagic seawater (200 m) from the northwest Sargasso Sea was used as media and inoculum and incubated over 28 d. All amendments demonstrated significant DOC removal (2–11 Όmol C L−1) compared to controls. Bacterioplankton abundance increased significantly in the deoxycholate and benzoic acid treatments relative to controls, with fast‐growing Spongiibacteracea, Euryarcheaota, and slow‐growing SAR11 enriched in the deoxycholate treatment and fast‐growing Alteromonas, Euryarcheaota, and Thaumarcheaota enriched in the benzoic acid treatment. In contrast, bacterioplankton grew slower in the lignin and humic acid treatments, with oligotrophic SAR202 becoming significantly enriched in the lignin treatment. Our results indicate that the character of the CRAM proxy compounds resulted in distinct bacterioplankton removal rates of DOM and affected specific lineages of bacterioplankton capable of responding.We thank Z. Landry for the inspiring idea of SAR202 catabolism of CRAM. We thank the University of California, Santa Barbara Marine Science Institute Analytical Laboratory for analyzing inorganic nutrient samples. We thank C. Johnson for her help in FISH sample processing and BATS group in supporting our project. We thank N. K. Rubin‐Saika and R. Padula for their help with amino acid sample preparation. We thank Z. Liu, J. Xue, K. Lu, and Y. Shen for their help with amino acid protocol development and validation. We thank B. Stephens for his help on microscopic image analysis. We thank M. Dasenko and the staff of the CGRB at Oregon State University for amplicon library preparation and DNA sequencing. We are grateful for the help provided by the officers and crews of the R/V Atlantic Explorer. Bermuda Institute of Ocean Sciences (BIOS) provides us tremendous support in terms of facilities and lab space. We thank Bermuda government for its allowance of our water sampling and sample export (export permit number SP160904, issued 07 October 2016 under the Fisheries Act, 1972). This project was supported by Simons Foundation International's BIOS‐SCOPE program

    Seasonality of the Microbial Community Composition in the North Atlantic

    Get PDF
    Planktonic communities constitute the basis of life in marine environments and have profound impacts in geochemical cycles. In the North Atlantic, seasonality drives annual transitions in the ecology of the water column. Phytoplankton bloom annually in spring as a result of these transitions, creating one of the major biological pulses in productivity on earth. The timing and geographical distribution of the spring bloom as well as the resulting biomass accumulation have largely been studied using the global capacity of satellite imaging. However, fine-scale variability in the taxonomic composition, spatial distribution, seasonal shifts, and ecological interactions with heterotrophic bacterioplankton has remained largely uncharacterized. The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted four meridional transects to characterize plankton ecosystems in the context of the annual bloom cycle. Using 16S rRNA gene-based community profiles we analyzed the temporal and spatial variation in plankton communities. Seasonality in phytoplankton and bacterioplankton composition was apparent throughout the water column, with changes dependent on the hydrographic origin. From winter to spring in the subtropic and subpolar subregions, phytoplankton shifted from the predominance of cyanobacteria and picoeukaryotic green algae to diverse photosynthetic eukaryotes. By autumn, the subtropics were dominated by cyanobacteria, while a diverse array of eukaryotes dominated the subpolar subregions. Bacterioplankton were also strongly influenced by geographical subregions. SAR11, the most abundant bacteria in the surface ocean, displayed higher richness in the subtropics than the subpolar subregions. SAR11 subclades were differentially distributed between the two subregions. Subclades Ia.1 and Ia.3 co-occurred in the subpolar subregion, while Ia.1 dominated the subtropics. In the subtropical subregion during the winter, the relative abundance of SAR11 subclades "II" and 1c.1 were elevated in the upper mesopelagic. In the winter, SAR202 subclades generally prevalent in the bathypelagic were also dominant members in the upper mesopelagic zones. Co-varying network analysis confirmed the large-scale geographical organization of the plankton communities and provided insights into the vertical distribution of bacterioplankton. This study represents the most comprehensive survey of microbial profiles in the western North Atlantic to date, revealing stark seasonal differences in composition and richness delimited by the biogeographical distribution of the planktonic communities

    Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity

    Get PDF
    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 ”mol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 ”mol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities
    • 

    corecore