942 research outputs found

    Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide.

    Get PDF
    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route

    Liver Resection for Primary Hepatic Neoplasms.

    Get PDF
    Subtotal hepatic resection was performed in 356 patients; 87 had primary hepatic malignancies, 108 had metastatic tumors, and 161 had benign lesions including 8 traumatic injuries. The global mortality was 4.2%. The experience has elucidated the role of subtotal hepatic resection both for benign and malignant neoplasms

    Arboviral disease outbreaks in the Pacific Islands countries and areas, 2014 to 2020: a systematic literature and document review

    Get PDF
    Arthropod-borne diseases pose a significant public health threat, accounting for greater than 17% of infectious disease cases and 1 million deaths annually. Across Pacific Island countries and areas (PICs), outbreaks of dengue, chikungunya, and Zika are increasing in frequency and scale. Data about arbovirus outbreaks are incomplete, with reports sporadic, delayed, and often based solely on syndromic surveillance. We undertook a systematic review of published and grey literature and contacted relevant regional authorities to collect information about arboviral activity affecting PICs between October 2014 and June 2020. Our literature search identified 1176 unique peer-reviewed articles that were reduced to 25 relevant publications when screened. Our grey literature search identified 873 sources. Collectively, these data reported 104 unique outbreaks, including 72 dengue outbreaks affecting 19 (out of 22) PICs, 14 chikungunya outbreaks affecting 11 PICs, and 18 Zika outbreaks affecting 14 PICs. Our review is the most complete account of arboviral outbreaks to affect PICs since comparable work was published in 2014. It highlights the continued elevated level of arboviral activity across the Pacific and inconsistencies in how information about outbreaks is reported and recorded. It demonstrates the importance of a One-Health approach and the role that improved communication and reporting between different governments and sectors play in understanding the emergence, circulation, and transboundary risks posed by arboviral diseases

    Benefit-Cost Analysis of FEMA Hazard Mitigation Grants

    Get PDF
    Mitigation ameliorates the impact of natural hazards on communities by reducing loss of life and injury, property and environmental damage, and social and economic disruption. The potential to reduce these losses brings many benefits, but every mitigation activity has a cost that must be considered in our world of limited resources. In principle benefit-cost analysis (BCA) can be used to assess a mitigation activity’s expected net benefits (discounted future benefits less discounted costs), but in practice this often proves difficult. This paper reports on a study that refined BCA methodologies and applied them to a national statistical sample of FEMA mitigation activities over a ten-year period for earthquake, flood, and wind hazards. The results indicate that the overall benefit-cost ratio for FEMA mitigation grants is about 4 to 1, though the ratio varies according to hazard and mitigation type.

    Ena/VASP is required for endothelial barrier function in vivo

    Get PDF
    Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell–cell and cell–matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response to shear stress. These findings demonstrate that Ena/VASP is critical for actin cytoskeleton remodeling events involved in the maintenance of functional endothelia

    Impact ionisation in Al0.9Ga0.1As0.08Sb0.92 for Sb-based avalanche photodiodes

    Get PDF
    We report the impact ionisation coefficients of the quaternary alloy Al0.9Ga0.1As0.08Sb0.92 lattice matched to GaSb substrates within the field range of 150 to 550 kV cm-1 using p-i-n and n-i-p diodes of various intrinsic thicknesses. The coefficients were found with an evolutionary fitting algorithm using a non-local recurrence based multiplication model and a variable electric field profile. These coefficients not only indicate that an avalanche photodiode can be designed to be function in the mid-wave infrared, but also can be operated at lower voltages. This is due to the high magnitude of the impact ionisation coefficients at relatively low fields compared to other III-V materials typically used in avalanche multiplication regions

    Technical testing and match analysis statistics as part of the talent development process in an English football academy

    Get PDF
    Technical ability is recognised as a fundamental prerequisite to achieve senior professional status in football. However, research is yet to investigate what technical attributes contribute to greater coach perceived potential within an academy environment. Therefore, the aim of this study was to examine technical ability and skill behaviour as contributing factors to coach potential ratings in an English football academy. Ninety-eight outfield academy players (Foundation Development Phase [FDP] under-9 to under-11 n= 40; Youth Development Phase [YDP] under-12 to under-16 n= 58) participated in the study. Four football-specific technical tests were used to measure technical ability, whilst eight match analysis statistics from competitive match-play across an entire season were observed to measure skill behaviour. A classification of “higher-potentials” (top third) and “lower-potentials” (bottom third) were applied through coach rankings. Within the FDP, higher-potentials performed significantly better (P< 0.05) on the lob pass test, alongside greater reliability in possession, pass completion, and total touches for match analysis statistics. Within the YDP, higher-potentials performed significantly better (P< 0.05) on all four technical tests, alongside greater reliability in possession, dribble completion, and total touches for match analysis statistics. Results suggest football-specific technical tests and “in possession” skill behaviours may provide discriminative tools that align with perceived potential

    Speed of Thought and Speed of Feet: Examining Perceptual-Cognitive Expertise and Physical Performance in an English Football Academy

    Get PDF
    The world’s greatest professional football players are able to execute effective tactical decisions as well as fulfil various physical demands. However, the degree to which both are associated with greater potential in a football academy is unknown. Therefore, the aim of this study was to investigate decision-making skill and physical performance as contributing factors to coach potential rankings in an English football academy. Ninety-eight outfield academy players (Foundation Development Phase [FDP] under-9 to under-11 n = 40; Youth Development Phase [YDP] under-12 to under-16 n = 58) participated in the study. They engaged in 45 film-based simulations at two occlusion phases (e.g., the visual display is cut-off at a precise time during an action), firstly “during” and secondly “post” execution, to examine decision-making skill. Participants also completed four fitness tests to examine physical performance. A classification of “higher-potentials” (top third) and “lower-potentials” (bottom third) were applied through coach rankings. Independent t-tests compared the decision-making and physical performance tests. Higher-potentials made significantly more accurate decisions within the “post” phase within the FDP (P < 0.05) and the “during” phase within the YDP (P < 0.05). Additionally, higher-potentials were significantly faster for the 0–30 m sprint in both the FDP and YDP (P < 0.05), with higher-potentials within the YDP also significantly faster in the 0–10 m sprint (P < 0.05) and jumped significantly higher in the countermovement jump (P < 0.05). These findings indicated that greater football potential may be associated with superior perceptual-cognitive expertise and quicker sprint ability in both academy age phases, with a greater discriminatory function within the older cohort
    • …
    corecore