449 research outputs found

    New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations

    Get PDF
    The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow) and under different conditions (clear or cloudy sky). The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near the ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces it was found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces it was found that the sand albedo is a quadratic function of wavelength, which becomes more accurate if the ultraviolet wavelengths are neglected. Finally, it was found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20–50%, despite the fact that their values differ by one order of magnitude (water albedo being lower). In addition, the snow albedo vs. ultraviolet wavelength is almost constant, while in the visible near-infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes

    Coherent phenomena in mesoscopic systems

    Full text link
    A mesoscopic system of cylindrical geometry made of a metal or a semiconductor is shown to exhibit features of a quantum coherent state. It is shown that magnetostatic interaction can play an important role in mesoscopic systems leading to an ordered ground state. The temperature TT^{*} below the system exhibits long-range order is determined. The self-consistent mean field approximation of the magnetostatic interaction is performed giving the effective Hamiltonian from which the self-sustaining currents can be obtained. The relation of quantum coherent state in mesoscopic cylinders to other coherent systems like superconductors is discussed.Comment: REVTeX, 4 figures, in print in Supercond. Sci. Techno

    Conductance of a tunnel point-contact of noble metals in the presence of a single defect

    Get PDF
    In paper [1] (Avotina et al. Phys. Rev. B,74, 085411 (2006)) the effect of Fermi surface anisotropy to the conductance of a tunnel point contact, in the vicinity of which a single point-like defect is situated, has been investigated theoretically. The oscillatory dependence of the conductance on the distance between the contact and the defect has been found for a general Fermi surface geometry. In this paper we apply the method developed in [1] to the calculation of the conductance of noble metal contacts. An original algorithm, which enables the computation of the conductance for any parametrically given Fermi surface, is proposed. On this basis a pattern of the conductance oscillations, which can be observed by the method of scanning tunneling microscopy, is obtained for different orientations of the surface for the noble metals.Comment: 8 pages, 5 figure

    Theory of oscillations in the STM conductance resulting from subsurface defects (Review Article)

    Get PDF
    In this review we present recent theoretical results concerning investigations of single subsurface defects by means of a scanning tunneling microscope (STM). These investigations are based on the effect of quantum interference between the electron partial waves that are directly transmitted through the contact and the partial waves scattered by the defect. In particular, we have shown the possibility imaging the defect position below a metal surface by means of STM. Different types of subsurface defects have been discussed: point-like magnetic and non-magnetic defects, magnetic clusters in a nonmagnetic host metal, and non-magnetic defects in a s-wave superconductor. The effect of Fermi surface anisotropy has been analyzed. Also, results of investigations of the effect of a strong magnetic field to the STM conductance of a tunnel point contact in the presence of a single defect has been presented.Comment: 31 pages, 10 figuers Submitted to Low. Temp. Phy

    Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport

    Full text link
    We report on the study of the Fermi surface of the electron-doped cuprate superconductor Nd2x_{2-x}Cex_xCuO4_{4} by measuring the interlayer magnetoresistance as a function of the strength and orientation of the applied magnetic field. We performed experiments in both steady and pulsed magnetic fields on high-quality single crystals with Ce concentrations of x=0.13x=0.13 to 0.17. In the overdoped regime of x>0.15x > 0.15 we found both semiclassical angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas (SdH) oscillations. The combined AMRO and SdH data clearly show that the appearance of fast SdH oscillations in strongly overdoped samples is caused by magnetic breakdown. This observation provides clear evidence for a reconstructed multiply-connected Fermi surface up to the very end of the overdoped regime at x0.17x\simeq 0.17. The strength of the superlattice potential responsible for the reconstructed Fermi surface is found to decrease with increasing doping level and likely vanishes at the same carrier concentration as superconductivity, suggesting a close relation between translational symmetry breaking and superconducting pairing. A detailed analysis of the high-resolution SdH data allowed us to determine the effective cyclotron mass and Dingle temperature, as well as to estimate the magnetic breakdown field in the overdoped regime.Comment: 23 pages, 8 figure

    Complex magnetic ordering in the oxide selenide Sr2Fe3Se2O3

    Get PDF
    Sr2Fe3Se2O3 is a localised-moment iron oxide selenide in which two unusual coordinations for Fe2+ ions form two sublattices in a 2:1 ratio. In the paramagnetic region at room temperature the compound adopts the crystal structure first reported for Sr2Co3S2O3, crystallising in space group Pbam with a = 7.8121 Å, b = 10.2375 Å, c = 3.9939 Å and Z = 2. The sublattice occupied by two thirds of the iron ions (Fe2 site) is formed by a network of distorted mer-[FeSe3O3] octahedra linked via shared Se2 edges and O vertices forming layers, which connect to other layers by shared Se vertices. As shown by magnetometry, neutron powder diffraction and Mössbauer spectroscopy measurements, these moments undergo long range magnetic ordering below TN1 = 118 K, initially adopting a magnetic structure with a propagation vector (½–δ, 0, ½) (0 ≤ ≤ 0.1) which is incommensurate with the nuclear structure and described in the Pbam1’(a01/2)000s magnetic superspace group, until at 92 K (TINC) there is a first order lock-in transition to a structure in which these Fe2 moments form a magnetic structure with a propagation vector (½ , 0, ½) which may be modelled using a 2a × b × 2c expansion of the nuclear cell in space group 36.178 Bab21m (BNS notation). Below TN2 = 52 K the remaining third of the Fe2+ moments (Fe1 site) which are in a compressed trans-[FeSe4O2] octahedral environment undergo long range ordering, as is evident from the magnetometry, the Mössbauer spectra and the appearance of new magnetic Bragg peaks in the neutron diffractograms. The ordering of the second set of moments on the Fe1 sites results in a slight re-orientation of the majority moments on the Fe2 sites. The magnetic structure at 1.5 K is described by a 2a × 2b × 2c expansion of the nuclear cell in space group 9.40 Iab (BNS notation)

    Little groups of irreps of O(3), SO(3), and the infinite axial subgroups

    Full text link
    Little groups are enumerated for the irreps and their components in any basis of O(3) and SO(3) up to rank 9, and for all irreps of C_{\infty}, Ch_{\infty h}, Cv_{\infty v}, D_{\infty} and Dh_{\infty h}. The results are obtained by a new chain criterion, which distinguishes massive (rotationally inequivalent) irrep basis functions and allows for multiple branching paths, and are verified by inspection. These results are relevant to the determination of the symmetry of a material from its linear and nonlinear optical properties and to the choices of order parameters for symmetry breaking in liquid crystals.Comment: 28 pages and 3 figure
    corecore