5 research outputs found

    Macromol. Mater. Eng. 3/2018

    Get PDF
    Bacterial cellulose blended polymeric fibrous bandages made in a novel way, from a solution subjected to gyration under pressure to directly weave the bandages. The products show cellular attraction, mechanical and swelling properties in preliminary tests and heralds a very promising new route for the manufacture of wound care bandages. This is reported by Esra Altun, Mehmet Onur Aydogdu, Fatma Koc, Maryam Crabbe‐Mann, Francis Brako, Rupy Kaur‐Matharu, Gunes Ozen, Serap Erdem Kuruca, Ursula Edirisinghe, Oguzhan Gunduz, and Mohan Edirisinghein

    Novel Making of Bacterial Cellulose Blended Polymeric Fiber Bandages

    Get PDF
    Bacterial cellulose (BC) is a very promising biological material. However, at present its utilization is limited by difficulties in shape forming it. In this Communication, it is shown how this can be overcome by blending it with poly(methylmethacrylate) (PMMA) polymer. BC:PMMA fibers are produced by pressurized gyration of blended BC:PMMA solutions. Subsequently, BC:PMMA bandage‐like scaffolds are generated with different blends. The products are investigated to determine their morphological and chemical features. Cell culture and proliferation tests are performed to obtain information on biocompatibility of the scaffolds

    Electrospinning of Cellulose Based Wound Dressing

    Get PDF
    Cellulose is the most abundant polymer found on the face of the earth with plants and bacteria producing over 1011 103 kg every year. Not only is this material widely available, it is renewable, sustainable and cheap, making it an attractive selection across many industries. The return to naturally derived materials in the medical field is driven by two motivations; the increased cases of resistance in bacteria to conventional drugs, and more relatedly, the need to reduce dependence on non-renewable resources when producing medical materials. Cellulose and its derivatives, are already used widely in the biomedical field in varying applications; drug delivery to eye drops. When manufacturing biomaterials from cellulose, the techniques used usually contain many steps and can be quite costly, this is where electrohydrodynamic (EHD) processing comes in. EHD is a one step process where under the influence of an electric field, a polymer solution or melt can be processed into micro- and nano-scale structures as a function of the polymer solution/melt properties such as concentration, molecular weight, solvent and processing properties such as voltage, flow rate and collection distance. In the first instance, this work investigated the electrospinning of three cellulose derivatives, ethyl cellulose, cellulose acetate and carboxymethyl cellulose; changing parameters aforementioned and observing the effect on the microstructures produced. Bacterial cellulose produced by the Gluconacetobacter xylinus bacteria, is chemically identical to plant cellulose, but is purer, not needing any separation or purifying post production. The most attractive feature of this bacterial cellulose (BC) is its liquid absorption capacity, it can hold many times it weight in liquid and proves to be useful in managing the exudate of diabetic ulcers. This BC was blended with different polymers and anti-diabetic drugs, after which in vitro behaviour was assessed

    Bioinspired scaffold induced regeneration of neural tissue

    Get PDF
    WOS: 000467668800012In the last decade, nerve tissue engineering has attracted much attention due to the incapability of self-regeneration. Nerve tissue regeneration is mainly based on scaffold induced nanofibrous structures using both bio and synthetic polymers. The produced nanofibrous scaffolds have to be similar to the natural extracellular matrix and should provide an appropriate environment for cells to attach onto. Nanofibrous scaffolds can support or regenerate cells of tissue. Electrospinning is an ideal method for producing the nanofibrous scaffolds. In this study, Bacterial cellulose (BC)/Poly (epsilon-caprolactone) (PCL) blend nanofibrous scaffolds were successfully prepared by electrospinning for nerve tissue induced repair. The produced nanofibrous scaffolds contain well defined interconnected nanofiber networks with hollow micro/nanobeads. Firstly, in-vitro biocompatibilities of nanofibrous scaffolds were tested with L2929 murine fibroblasts and improved cell adhesion and proliferation was observed with polymer blends compared with PCL only. The primary cell culture was performed with dorsal root ganglia (DRG) cells on nanofibrous samples and the samples were found suitable for enhancing neural growth and neurite outgrowth. Based on these results, the BC/PCL (50:50 wt%) nanofibrous scaffolds exhibited nerve-like branching and are excellent candidate for potential biomimetic applications in nerve tissue engineering regeneration
    corecore