747 research outputs found

    The WCSAR telerobotics test bed

    Get PDF
    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators

    Visible and infrared photocurrent enhancement in a graphene-silicon Schottky photodetector through surface-states and electric field engineering

    Get PDF
    The design of efficient graphene-silicon (GSi) Schottky junction photodetectors requires detailed understanding of the spatial origin of the photoresponse. Scanning-photocurrent-microscopy (SPM) studies have been carried out in the visible wavelengths regions only, in which the response due to silicon is dominant. Here we present comparative SPM studies in the visible (λ\lambda = 633nm) and infrared (λ\lambda = 1550nm) wavelength regions for a number of GSi Schottky junction photodetector architectures, revealing the photoresponse mechanisms for silicon and graphene dominated responses, respectively, and demonstrating the influence of electrostatics on the device performance. Local electric field enhancement at the graphene edges leads to a more than ten-fold increased photoresponse compared to the bulk of the graphene-silicon junction. Intentional design and patterning of such graphene edges is demonstrated as an efficient strategy to increase the overall photoresponse of the devices. Complementary simulations and modeling illuminate observed effects and highlight the importance of considering graphene's shape and pattern and device geometry in the device design

    Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    Full text link
    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.Comment: 30 pages, 12 figure

    A Measurement of the Electric Form Factor of the Neutron through d⃗(e⃗,eâ€Čn)p\vec{d}(\vec{e},e'n)p at Q2=0.5Q^2 = 0.5 (GeV/c)2^2

    Full text link
    We report the first measurement of the neutron electric form factor GEnG_E^n via d⃗(e⃗,eâ€Čn)p\vec{d}(\vec{e},e'n)p using a solid polarized target. GEnG_E^n was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, 15^{15}ND3_3. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find GEn=0.04632±0.00616(stat.)±0.00341(syst.)G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.) at Q2=0.495Q^2 = 0.495 (GeV/c)2^2.Comment: Latex2e 5 pages, 3 figure
    • 

    corecore