165 research outputs found

    ADH1B Arg47His Polymorphism Is Associated with Esophageal Cancer Risk in High-Incidence Asian Population: Evidence from a Meta-Analysis

    Get PDF
    with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis.. Heterogeneity among studies and their publication bias were also tested. can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32–78.07). allele

    Serum metabolomic profiling in acute alcoholic hepatitis identifies multiple dysregulated pathways

    Get PDF
    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is characterized by a distinct metabolic phenotype spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers for disease prognosis, and future studies are planned to validate these findings in larger cohorts of patients with severe AAH.This study was funded by Grant 5K08AA017622 from the National Institutes of Health and a University of Pittsburgh Medical Center Pilot Grant to JB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Familial risk for gastric carcinoma: an updated study from Sweden

    Get PDF
    Reliable data on familial risks are important for clinical counselling and cancer genetics. However, the estimates of familial risk of gastric cancer vary widely. We examined the risk of familial gastric cancer using the updated Swedish Family-Cancer Database with 5358 patients among offspring and 36 486 patients among parents. There were 133 families with one parent and one offspring diagnosed with gastric cancer, and 20 families with two affected offspring. Familial standardised incidence ratios (SIRs) were 1.63 and 2.93 when parents and siblings presented with gastric cancer, respectively. The high sibling risk was owing to cancer in the corpus (SIR 7.28). The SIR for cardia cancer was 1.54 when parents were diagnosed with any gastric cancer. Cardia cancer associated with oesophageal cancer, particularly with oesophageal adenocarcinoma. Among specific histologies, signet ring cancer showed an increase. A few associations were noted for discordant sites, including the urinary bladder and the endometrium. H. pylori infection, although not measured in the present study, is probably an important risk factor for the high sibling risk of corpus cancer. Familial clustering of cardia cancer is independent of H. pylori infection, and may have a genetic basis. The familial association of cardia cancer with oesophageal adenocarcinoma may provide aetiological clues

    A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus.

    Get PDF
    Esophageal adenocarcinoma is a cancer with rising incidence and poor survival. Most such cancers arise in a specialized intestinal metaplastic epithelium, which is diagnostic of Barrett's esophagus. In a genome-wide association study, we compared esophageal adenocarcinoma cases (n = 2,390) and individuals with precancerous Barrett's esophagus (n = 3,175) with 10,120 controls in 2 phases. For the combined case group, we identified three new associations. The first is at 19p13 (rs10419226: P = 3.6 × 10(-10)) in CRTC1 (encoding CREB-regulated transcription coactivator), whose aberrant activation has been associated with oncogenic activity. A second is at 9q22 (rs11789015: P = 1.0 × 10(-9)) in BARX1, which encodes a transcription factor important in esophageal specification. A third is at 3p14 (rs2687201: P = 5.5 × 10(-9)) near the transcription factor FOXP1, which regulates esophageal development. We also refine a previously reported association with Barrett's esophagus near the putative tumor suppressor gene FOXF1 at 16q24 and extend our findings to now include esophageal adenocarcinoma

    Antineoplastic effects of rosiglitazone and PPARγ transactivation in neuroblastoma cells

    Get PDF
    Neuroblastoma (NB) is the most common extracranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. In the present study, we evaluated the role of the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (RGZ) in two NB cell lines (SK-N-AS and SH-SY5Y), which express PPARγ. Rosiglitazone decreased cell proliferation and viability to a greater extent in SK-N-AS than in SH-SY5Y. Furthermore, 20 μM RGZ significantly inhibited cell adhesion, invasiveness and apoptosis in SK-N-AS, but not in SH-SY5Y. Because of the different response of SK-N-AS and SH-SY5Y cells to RGZ, the function of PPARγ as a transcriptional activator was assessed. Noticeably, transient transcription experiments with a PPARγ responsive element showed that RGZ induced a three-fold increase of the reporter activity in SK-N-AS, whereas no effect was observed in SH-SY5Y. The different PPARγ activity may be likely due to the markedly lower amount of phopshorylated (i.e. inactive) protein observed in SK-N-AS. To our knowledge, this is the first demonstration that the differential response of NB cells to RGZ may be related to differences in PPARγ transactivation. This finding indicates that PPARγ activity may be useful to select those patients, for whom PPARγ agonists may have a beneficial therapeutic effect

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity
    corecore