480 research outputs found

    Rotational Feshbach Resonances in Ultracold Molecular Collisions

    Full text link
    In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O_2, OH, and PbO. The density of s-wave resonant states for these species is quite high, implying that a large number of narrow resonant states will exist.Comment: 4 pages, 2 figure

    Peptide-Tetrapyrrole Supramolecular Self-Assemblies: State of the Art.

    Get PDF
    The covalent and noncovalent association of self-assembling peptides and tetrapyrroles was explored as a way to generate systems that mimic Nature's functional supramolecular structures. Different types of peptides spontaneously assemble with porphyrins, phthalocyanines, or corroles to give long-range ordered architectures, whose structure is determined by the features of both components. The regular morphology and ordered molecular arrangement of these systems enhance the photochemical properties of embedded chromophores, allowing applications as photo-catalysts, antennas for dye-sensitized solar cells, biosensors, and agents for light-triggered therapies. Chemical modifications of peptide and tetrapyrrole structures and control over the assembly process can steer the organization and influence the properties of the resulting system. Here we provide a review of the field, focusing on the assemblies obtained from different classes of self-assembling peptides with tetrapyrroles, their morphologies and their applications as innovative functional materials

    A phase II study of capecitabine and oxalplatin combination chemotherapy in patients with inoperable adenocarcinoma of the gall bladder or biliary tract

    Get PDF
    Background: Advanced biliary tract carcinomas are associated with a poor prognosis, and palliative chemotherapy has only modest benefit. This multi-centre phase II study was conducted to determine the efficacy of capecitabine in combination with oxaliplatin in patients with inoperable gall bladder or biliary tract cancer. Methods: This was a Phase II, non-randomised, two-stage Simon design, multi-centre study. Ethics approval was sought and obtained by the North West MREC, and then locally by the West Glasgow Hospitals Research Ethics Com mittee. Eligible patients with inoperable locally advanced or metastatic adenocarcinoma of the gall bladder or biliary tract and with adequate performance status, haematologic, renal, and hepatic function were treated with capecit abine (1000 mg/m2 po, twice daily, days 1–14) and oxaliplatin (130 mg/m2 i.v., day 1) every 3 weeks for up to six cycles. The primary objective of the study was to determine the objective tumour response rates (complete and partial). The secondary objectives included assessment of toxicity, progression-free survival, and overall survival. Results: Forty-three patients were recruited between July 2003 and December 2005. The regimen was well tolerated with no grade 3/4 neutropenia or thrombocytopenia. Grade 3/4 sensory neuropathy was observed in six patients. Two-thirds of patients received their chemotherapy without any dose delays. Overall response rate was 23.8 % (95 % CI 12.05–39.5 %). Stable disease was observed in a further 13 patients (31 %) and progressive disease observed in 12 (28.6 %) of patients. The median progression-free survival was 4.6 months (95 % CI 2.8–6.4 months; Fig. 1) and the median overall survival 7.9 months (95 % CI 5.3–10.4 months; Fig. 2). Conclusion: Capecitabine combined with oxaliplatin has a lower disease control and shorter overall survival than the combination of cisplatin with gemcitabine which has subsequently become the standard of care in this disease. How ever, capecitabine in combination with oxaliplatin does have modest activity in this disease, and can be considered as an alternative treatment option for patients in whom cisplatin and/or gemcitabine are contra-indicated

    Wastewater discharges and urban land cover dominate urban hydrology signals across England and Wales

    Get PDF
    Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow

    Cold collisions of OH and Rb. I: the free collision

    Get PDF
    We have calculated elastic and state-resolved inelastic cross sections for cold and ultracold collisions in the Rb(1S^1 S) + OH(2Π3/2^2 \Pi_{3/2}) system, including fine-structure and hyperfine effects. We have developed a new set of five potential energy surfaces for Rb-OH(2Π^2 \Pi) from high-level {\em ab initio} electronic structure calculations, which exhibit conical intersections between covalent and ion-pair states. The surfaces are transformed to a quasidiabatic representation. The collision problem is expanded in a set of channels suitable for handling the system in the presence of electric and/or magnetic fields, although we consider the zero-field limit in this work. Because of the large number of scattering channels involved, we propose and make use of suitable approximations. To account for the hyperfine structure of both collision partners in the short-range region we develop a frame-transformation procedure which includes most of the hyperfine Hamiltonian. Scattering cross sections on the order of 10−1310^{-13} cm2^2 are predicted for temperatures typical of Stark decelerators. We also conclude that spin orientation of the partners is completely disrupted during the collision. Implications for both sympathetic cooling of OH molecules in an environment of ultracold Rb atoms and experimental observability of the collisions are discussed.Comment: 20 pages, 16 figure

    Keck-Nirspec Infrared OH Lines: Oxygen Abundances in Metal-Poor Stars Down to [Fe/H] = -2.9

    Get PDF
    Infrared OH lines at 1.5 - 1.7 um in the H band were obtained with the NIRSPEC high-resolution spectrograph at the 10m Keck Telescope for a sample of seven metal-poor stars. Detailed analyses have been carried out, based on optical high-resolution data obtained with the FEROS spectrograph at ESO. Stellar parameters were derived by adopting infrared flux method effective temperatures, trigonometric and/or evolutionary gravities and metallicities from FeII lines. We obtain that the sample stars with metallicities [Fe/H] < -2.2 show a mean oxygen abundance [O/Fe] ~ 0.54, for a solar oxygen abundance of epsilon(O) = 8.87, or [O/Fe] ~ 0.64 if epsilon(O) = 8.77 is assumed.Comment: To be published in ApJ 575 (August 10

    Fluorescent Risedronate Analogues Reveal Bisphosphonate Uptake by Bone Marrow Monocytes and Localization Around Osteocytes In Vivo

    Get PDF
    Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647–labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14high bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14+ cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo. © 2010 American Society for Bone and Mineral Researc

    Pharmacoeconomic analysis of adjuvant oral capecitabine vs intravenous 5-FU/LV in Dukes' C colon cancer: the X-ACT trial

    Get PDF
    Oral capecitabine (Xeloda&lt;sup&gt;&#174;&lt;/sup&gt;) is an effective drug with favourable safety in adjuvant and metastatic colorectal cancer. Oxaliplatin-based therapy is becoming standard for Dukes' C colon cancer in patients suitable for combination therapy, but is not yet approved by the UK National Institute for Health and Clinical Excellence (NICE) in the adjuvant setting. Adjuvant capecitabine is at least as effective as 5-fluorouracil/leucovorin (5-FU/LV), with significant superiority in relapse-free survival and a trend towards improved disease-free and overall survival. We assessed the cost-effectiveness of adjuvant capecitabine from payer (UK National Health Service (NHS)) and societal perspectives. We used clinical trial data and published sources to estimate incremental direct and societal costs and gains in quality-adjusted life months (QALMs). Acquisition costs were higher for capecitabine than 5-FU/LV, but higher 5-FU/LV administration costs resulted in 57% lower chemotherapy costs for capecitabine. Capecitabine vs 5-FU/LV-associated adverse events required fewer medications and hospitalisations (cost savings £3653). Societal costs, including patient travel/time costs, were reduced by &gt;75% with capecitabine vs 5-FU/LV (cost savings £1318), with lifetime gain in QALMs of 9 months. Medical resource utilisation is significantly decreased with capecitabine vs 5-FU/LV, with cost savings to the NHS and society. Capecitabine is also projected to increase life expectancy vs 5-FU/LV. Cost savings and better outcomes make capecitabine a preferred adjuvant therapy for Dukes' C colon cancer. This pharmacoeconomic analysis strongly supports replacing 5-FU/LV with capecitabine in the adjuvant treatment of colon cancer in the UK

    Wei Hua's Four Parameter Potential Comments and Computation of Moleculer Constants \alpha_e and \omega_e x_e

    Full text link
    The value of adjustable parameter CC and the four-parameter potential U(r)=De[1−exp[−b(r−re)]1−Cexp[−b(r−re)]]2U(r) = D_{e}\left [ \frac{1-{exp}[-b(r-r_{e})]}{1-C{exp} [-b(r-r_{e})]} \right ]^{2} has been expressed in terms of molecular parameters and its significance has been brought out. The potential so constructed, with CC derived from the molecular parameters, has been applied to ten electronic states in addition to the states studied by Wei Hua. Average mean deviation has been found to be 3.47 as compared to 6.93, 6.95 and 9.72 obtained from Levine2, Varshni and Morse potentials, respectively. Also Dunham's method has been used to express rotation-vibration interaction constant (αe)(\alpha_{e}) and anharmonocity constant (ωexe)(\omega_{e}x_{e}) in terms of CC and other molecular constants. These relations have been employed to determine these quantities for 37 electronic states. For αe\alpha_{e}, the average mean deviation is 7.2% compared to 19.7% for Lippincott's potential which is known to be the best to predict the values. Average mean deviation for (ωexe)(\omega_{e}x_{e}) turns out to be 17.4% which is almost the same as found from Lippincott's potential function.Comment: 19 RevTex Pages, 1 Ps figure, submitted to J. Phys.

    Accurate laboratory rest frequencies of vibrationally excited CO up to varv=3varv = 3 and up to 2 THz

    Full text link
    Astronomical observations of (sub)millimeter wavelength pure rotational emission lines of the second most abundant molecule in the Universe, CO, hold the promise of probing regions of high temperature and density in the innermost parts of circumstellar envelopes. The rotational spectrum of vibrationally excited CO up to \varv = 3 has been measured in the laboratory between 220 and 1940 GHz with relative accuracies up to 5.2×10−95.2 \times 10^{-9}, corresponding to ∼5\sim 5 kHz near 1 THz. The rotational constant BB and the quartic distortion parameter DD have been determined with high accuracy and even the sextic distortion term HH was determined quite well for \varv = 1 while reasonable estimates of HH were obtained for \varv = 2 and 3. The present data set allows for the prediction of accurate rest frequencies of vibrationally excited CO well beyond 2 THz.Comment: Astron. Astrophys, accepted; 5 pages, 2 Figures, 2 Table
    • …
    corecore