23 research outputs found

    A de novo paradigm for male infertility

    Get PDF
    De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p -value = 1.00 × 10 −5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p -value = 5.01 × 10 −4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p -value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility. Germline de novo mutations can impact individual fitness, but their role in human male infertility is understudied. Trio-based exome sequencing identifies many new candidate genes affecting male fertility, including an essential regulator of male germ cell pre-mRNA splicing

    Retinal pigment epithelium extracellular vesicles are potent inducers of age‐related macular degeneration disease phenotype in the outer retina

    Get PDF
    Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells

    Erratum to: Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains.

    Get PDF
    Mitochondria play a key role in common neurodegenerative diseases and contain their own genome: mtDNA. Common inherited polymorphic variants of mtDNA have been associated with several neurodegenerative diseases, and somatic deletions of mtDNA have been found in affected brain regions. However, there are conflicting reports describing the role of rare inherited variants and somatic point mutations in neurodegenerative disorders, and recent evidence also implicates mtDNA levels. To address these issues we studied 1363 post mortem human brains with a histopathological diagnosis of Parkinson's disease (PD), Alzheimer's disease (AD), Frontotemporal dementia - Amyotrophic Lateral Sclerosis (FTD-ALS), Creutzfeldt Jacob disease (CJD), and healthy controls. We obtained high-depth whole mitochondrial genome sequences using off target reads from whole exome sequencing to determine the association of mtDNA variation with the development and progression of disease, and to better understand the development of mtDNA mutations and copy number in the aging brain. With this approach, we found a surprisingly high frequency of heteroplasmic mtDNA variants in 32.3% of subjects. However, we found no evidence of an association between rare inherited variants of mtDNA or mtDNA heteroplasmy and disease. In contrast, we observed a reduction in the amount of mtDNA copy in both AD and CJD. Based on these findings, single nucleotide variants of mtDNA are unlikely to play a major role in the pathogenesis of these neurodegenerative diseases, but mtDNA levels merit further investigation

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Blood mRNA Expression in Alzheimer's Disease and Dementia With Lewy Bodies.

    Get PDF
    OBJECTIVES: The objective of this study was to investigate the expression of genes in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), both at the mild cognitive impairment (MCI) and dementia stages, to improve our understanding of disease pathophysiology and investigate the potential for diagnostic and prognostic biomarkers based on mRNA expression. DESIGN: Cross-sectional observational study. SETTING: University research center. PARTICIPANTS: People with MCI with Lewy bodies (MCI-LB, n=55), MCI-AD (n=19), DLB (n=38), AD (n=24) and a cognitively unimpaired comparison group (n=28). MEASUREMENTS: Ribonucleic acid sequencing of whole blood. Differentially expressed genes (DEGs) were identified and gene set enrichment analysis was carried out. RESULTS: Compared with the cognitively unimpaired group, there were 22 DEGs in MCI-LB/DLB and 61 DEGs in MCI-AD/AD. DEGS were also identified when comparing the two disease groups. Expression of ANP32A was associated with more rapid cognitive decline in MCI-AD/AD. Gene set enrichment analysis identified downregulation in gene sets including MYC targets and oxidative phosphorylation in MCI-LB/DLB; upregulation of immune and inflammatory responses in MCI-AD/AD; and upregulation of interferon-α and -γ responses in MCI-AD/AD compared with MCI-LB/DLB. CONCLUSION: This study identified multiple DEGs in MCI-LB/DLB and MCI-AD/AD. One of these DEGs, ANP32A, may be a prognostic marker in AD. Genes related to mitochondrial function were downregulated in MCI-LB/DLB. Previously reported upregulation of genes associated with inflammation and immune responses in MCI-AD/AD was confirmed in this cohort. Differences in interferon responses between MCI-AD/AD and MCI-LB/DLB suggest that there are key differences in peripheral immune responses between these diseases.This work was supported by Alzheimer’s Research UK (Grant Numbers ARUK-PPG2018B008 (PCD) and ARUK-PG3026-13 (AJT)) and the NIHR Newcastle Biomedical Research Centre. JO’B is supported by the NIHR Cambridge Biomedical Research Centre and the Cambridge Centre for Parkinson’s Plus Disorders. The funders had no role in study design; the collection, analysis and interpretation of data; the writing of the report; and the decision to submit the article for publication. The authors would like to thank The NIHR Clinical Research Network North East and Cumbria for their invaluable support with participant recruitment to these studies. We would also like to thank Ms Helen Kain and Ms Sally Barker for their support in the co-ordination of this research

    Single-cell DNA sequencing identifies risk-associated clonal complexity and evolutionary trajectories in childhood medulloblastoma development

    Get PDF
    We reconstructed the natural history and temporal evolution of the most common childhood brain malignancy, medulloblastoma, by single-cell whole-genome sequencing (sc-WGS) of tumours representing its major molecular sub-classes and clinical risk groups. Favourable-risk disease sub-types assessed (MB and infant desmoplastic/nodular MB ) typically comprised a single clone with no evidence of further evolution. In contrast, highest risk sub-classes (MYC-amplified MB and TP53-mutated MB ) were most clonally diverse and displayed gradual evolutionary trajectories. Clinically adopted biomarkers (e.g. chromosome 6/17 aberrations; CTNNB1/TP53 mutations) were typically early-clonal/initiating events, exploitable as targets for early-disease detection; in analyses of spatially distinct tumour regions, a single biopsy was sufficient to assess their status. Importantly, sc-WGS revealed novel events which arise later and/or sub-clonally and more commonly display spatial diversity; their clinical significance and role in disease evolution post-diagnosis now require establishment. These findings reveal diverse modes of tumour initiation and evolution in the major medulloblastoma sub-classes, with pathogenic relevance and clinical potential
    corecore