1,425 research outputs found

    Numerical simulations of the kappa-mechanism with convection

    Full text link
    A strong coupling between convection and pulsations is known to play a major role in the disappearance of unstable modes close to the red edge of the classical Cepheid instability strip. As mean-field models of time-dependent convection rely on weakly-constrained parameters, we tackle this problem by the means of 2-D Direct Numerical Simulations (DNS) of kappa-mechanism with convection. Using a linear stability analysis, we first determine the physical conditions favourable to the kappa-mechanism to occur inside a purely-radiative layer. Both the instability strips and the nonlinear saturation of unstable modes are then confirmed by the corresponding DNS. We next present the new simulations with convection, where a convective zone and the driving region overlap. The coupling between the convective motions and acoustic modes is then addressed by using projections onto an acoustic subspace.Comment: 5 pages, 6 figures, accepted for publication in Astrophysics and Space Science, HELAS workshop (Rome june 2009

    Application of density functional theory in the synthesis of electroactive polymers

    Get PDF
    A wide range of conjugated organic compounds undergo anodic electropolymerisation to produce polymers of high conductivity. However, electrooxidation does not always result in the formation of electroactive materials, since some reactions produce insulating films or soluble oligomers. Density functional theory (DFT) has been used to predict the outcome of electropolymerisation reactions by calculating the unpaired electron π-spin density distribution of monomeric radical cations, in order to determine coupling positions in the resultant polymers. π-Spin densities calculated for pyrrole, thiophene and (E)-stilbene are found to be in good agreement with experimental values. DFT has been used to investigate the low conductivity and redox inactivity of poly[(E)-3-styrylthiophenes] and poly[(E)-2-styrylheterocycles]. High positive spin densities at the alkene spacer linkage in the corresponding monomeric radical cations were found, suggesting crosslinking of the polymers via the double bond. In contrast, electroactive polymers of improved conductivity are formed from the electropolymerisation of some (Z)-2-α,β-diarylacrylonitriles. For these monomers, DFT calculations show the positions of highest spin density to be located at the α-positions of the heterocyclic rings, suggesting the presence of α,α′-linked monomeric couplings necessary for electroactivity

    A log analysis study of 10 years of ebook consumption in academic library collections

    Get PDF
    Even though libraries have been offering eBooks for more than a decade, very little is known about eBook access and consumption in academic library collections. This paper addresses this gap with a log analysis study of eBook access at the library of the University of Waikato. This in-depth analysis covers a period spanning 10 years of eBook use at this university. We draw conclusions about the use of eBooks at this institution and compare the results with other published studies of eBook usage at tertiary institutes

    Characterisation, modification and mathematical modelling of sudsing

    Get PDF
    A programme of research is outlined which considers the foaming performance and foam behaviour of surfactant systems commonly encountered in hand-wash laundry detergent applications. An experimental study of the physical chemistry of foam generation indicates that precipitation of a typical anionic surfactant with calcium forms mesophase particles and causes a marked reduction in the rate of transport of surfactant to air–water surfaces and a concomitant reduction in foaming. Oily soil antifoam effects are however insensitive to the presence of calcium, being equally effective regardless of pH and calcium content. They may be reproduced by a simple particle–oil mixture of a saturated and an unsaturated triglyceride (e.g. tristearin and triolein respectively). A detailed foam rheometry study is performed using foam flowing through a constriction. Bubble shapes are used to deduce the normal and shear stresses across the foam flow field. Broad agreement between the experimental stress field and that obtained from quasistatic simulations is demonstrated. As foam flow-rate increases, a different model, which takes explicit account of viscous dissipative forces within the foam flow field is required. The dissipative foam flow model predicts differential shrinkage and stretch rates of foam films. Coupled to a model for surfactant transport, this shows the extent to which surfactant concentration accumulates in shrinking films and is depleted in stretching films. In addition to film stretching, it is also important to know about film bursting or failure rates. Here failure rates are estimated using capillary suction pressures exerted on the films by Plateau border channels around film edges. The failure rates can then be employed to predict the evolution of bubble size at various spatial locations in a foam: reasonable agreement with experimental bubble size distributions is obtained

    Model of hopping dc conductivity via nearest neighbor boron atoms in moderately compensated diamond crystals

    Full text link
    Expressions for dependences of the pre-exponential factor \sigma_3 and the thermal activation energy \epsilon_3 of hopping electric conductivity of holes via boron atoms on the boron atom concentration N and the compensation ratio K are obtained in the quasiclassical approximation. It is assumed that the acceptors (boron atoms) in charge states (0) and (-1) and the donors that compensate them in the charge state (+1) form a nonstoichiometric simple cubic lattice with translational period R_h = [(1 + K)N]^{-1/3} within the crystalline matrix. A hopping event occurs only over the distance R_h at a thermally activated accidental coincidence of the acceptor levels in charge states (0) and (-1). Donors block the fraction K/(1 - K) of impurity lattice sites. The hole hopping conductivity is averaged over all possible orientations of the lattice with respect to the external electric field direction. It is supposed that an acceptor band is formed by Gaussian fluctuations of the potential energy of boron atoms in charge state (-1) due to Coulomb interaction only between the ions at distance R_h. The shift of the acceptor band towards the top of the valence band with increasing N due to screening (in the Debye--H\"uckel approximation) of the impurity ions by holes hopping via acceptor states was taken into account. The calculated values of \sigma_3(N) and \epsilon_3(N) for K \approx 0.25 agree well with known experimental data at the insulator side of the insulator--metal phase transition. The calculation is carried out at a temperature two times lower than the transition temperature from hole transport in v-band of diamond to hopping conductance via boron atoms.Comment: 6 pages, 2 figure

    Specific-pathogen-free pigs as an animal model for studying Chlamydia trachomatis genital infection

    Get PDF
    The purpose of the present study was to evaluate pigs as a large-animal model for female genital infection with two Chlamydia trachomatis human serovar E strains. Sixteen-week-old specific-pathogen-free female pigs (gilts) were intravaginally infected with the trachoma type E reference strain Bour or the urogenital serovar E strain 468. Several conclusions can be drawn from our findings on the pathogenicity of a primary C. trachomatis genital infection in gilts. First of all, we demonstrated that the serovar E strains Bour and 468 could ascend in the genital tract of gilts. The serovar E strains could replicate in the superficial columnar cervical epithelium and in the superficial epithelial layer of the uterus, which are known to be the specific target sites for a C. trachomatis genital infection in women. Second, inflammation and pathology occurred at the replication sites. Third, the organisms could trigger a humoral immune response, as demonstrated by the presence of immunoglobulin M (IgM), IgG, and IgA in both serum and genital secretion samples. Our findings imply that the pig model might be useful for studying the pathology, pathogenesis, and immune response to a C. trachomatis infection of the genital system
    corecore