34,610 research outputs found

    Causal Inference When Counterfactuals Depend on the Proportion of All Subjects Exposed

    Full text link
    The assumption that no subject's exposure affects another subject's outcome, known as the no-interference assumption, has long held a foundational position in the study of causal inference. However, this assumption may be violated in many settings, and in recent years has been relaxed considerably. Often this has been achieved with either the aid of a known underlying network, or the assumption that the population can be partitioned into separate groups, between which there is no interference, and within which each subject's outcome may be affected by all the other subjects in the group via the proportion exposed (the stratified interference assumption). In this paper, we instead consider a complete interference setting, in which each subject affects every other subject's outcome. In particular, we make the stratified interference assumption for a single group consisting of the entire sample. This can occur when the exposure is a shared resource whose efficacy is modified by the number of subjects among whom it is shared. We show that a targeted maximum likelihood estimator for the i.i.d.~setting can be used to estimate a class of causal parameters that includes direct effects and overall effects under certain interventions. This estimator remains doubly-robust, semiparametric efficient, and continues to allow for incorporation of machine learning under our model. We conduct a simulation study, and present results from a data application where we study the effect of a nurse-based triage system on the outcomes of patients receiving HIV care in Kenyan health clinics.Comment: 23 pages main article, 23 pages supplementary materials + references, 4 tables, 1 figur

    Diffractive production of high pt photons at HERA

    Get PDF
    We study the diffractive production of high pt photons at HERA. We have implemented the process as a new hard sub-process in the HERWIG event generator in order to prepare the ground for a future measurement.Comment: 4 pages, 4 figures. Contribution to the 1999 UK Phenomenology Workshop on Collider Physics, Durham, U

    Mediation of Long Range Charge Transfer by Kondo Bound States

    Get PDF
    We present a theory of non-equilibrium long range charge transfer between donor and acceptor centers in a model polymer mediated by magnetic exciton (Kondo) bound states. Our model produces electron tunneling lengths easily exceeding 10A˚\AA, as observed recently in DNA and organic charge transfer systems. This long ranged tunneling is effective for weak to intermediate donor-bridge coupling, and is enhanced both by weak to intermediate strength Coulomb hole-electron attraction (through the orthogonality catastrophe) and by coupling to local vibrational modes.Comment: Revised content (broadened scope, vibrations added), submitted to Phys Rev Lett, added autho
    corecore