1,289 research outputs found
Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand
AbstractBetween 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N2O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain
Optical investigation on the electronic structures of Y_{2}Ru_{2}O_{7}, CaRuO_{3}, SrRuO_{3}, and Bi_{2}Ru_{2}O_{7}
We investigated the electronic structures of the bandwidth-controlled
ruthenates, YRuO, CaRuO, SrRuO, and BiRuO, by optical conductivity analysis in a wide energy region of 5 meV
12 eV. We could assign optical transitions from the systematic changes
of the spectra and by comparison with the O 1 x-ray absorption data. We
estimated some physical parameters, such as the on-site Coulomb repulsion
energy and the crystal-field splitting energy. These parameters show that the
4 orbitals should be more extended than 3 ones. These results are also
discussed in terms of the Mott-Hubbard model.Comment: 12 pages (1 table), 3 figure
A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model development and validation
A coupled system of wind, wind wave, and coastal circulation models has been implemented for southern Louisiana and Mississippi to simulate riverine flows, tides, wind waves, and hurricane storm surge in the region.The system combines the NOAA Hurricane Research Division Wind Analysis System (H*WIND) and the Interactive Objective Kinematic Analysis (IOKA) kinematic wind analyses, the Wave Model (WAM) offshore and Steady-State Irregular Wave (STWAVE) nearshore wind wave models, and the Advanced Circulation (ADCIRC) basin to channel-scale unstructured grid circulation model. The system emphasizes a high-resolution (down to 50 m) representation of the geometry, bathymetry, and topography; nonlinear coupling of all processes including wind wave radiation stress-induced set up; and objective specification of frictional parameters based on land-cover databases and commonly used parameters. Riverine flows and tides are validated for no storm conditions, while winds, wind waves, hydrographs, and high water marks are validated for Hurricanes Katrina and Rita
A High-Resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analysis of hurricanes Katrina and Rita
Hurricanes Katrina and Rita were powerful storms that impacted southern Louisiana and Mississippi during the 2005 hurricane season. In Part I, the authors describe and validate a high-resolution coupled riverine flow, tide, wind, wave, and storm surge model for this region. Herein, the model is used to examine the evolution of these hurricanes in more detail. Synoptic histories show how storm tracks, winds, and waves interacted with the topography, the protruding Mississippi River delta, east-west shorelines, manmade structures, and low-lying marshes to develop and propagate storm surge. Perturbations of the model, in which the waves are not included, show the proportional importance of the wave radiation stress gradient induced setup
Binding Energy of Charged Excitons in ZnSe-based Quantum Wells
Excitons and charged excitons (trions) are investigated in ZnSe-based quantum
well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of
magneto-optical spectroscopy. Binding energies of negatively () and positively
(X+) charged excitons are measured as functions of quantum well width, free
carrier density and in external magnetic fields up to 47 T. The binding energy
of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well
width from 190 to 29 A. The binding energies of X+ are about 25% smaller than
the binding energy in the same structures. The magnetic field behavior of and
X+ binding energies differ qualitatively. With growing magnetic field strength,
increases its binding energy by 35-150%, while for X+ it decreases by 25%.
Zeeman spin splittings and oscillator strengths of excitons and trions are
measured and discussed
Transport properties of strongly correlated metals:a dynamical mean-field approach
The temperature dependence of the transport properties of the metallic phase
of a frustrated Hubbard model on the hypercubic lattice at half-filling are
calculated. Dynamical mean-field theory, which maps the Hubbard model onto a
single impurity Anderson model that is solved self-consistently, and becomes
exact in the limit of large dimensionality, is used. As the temperature
increases there is a smooth crossover from coherent Fermi liquid excitations at
low temperatures to incoherent excitations at high temperatures. This crossover
leads to a non-monotonic temperature dependence for the resistance,
thermopower, and Hall coefficient, unlike in conventional metals. The
resistance smoothly increases from a quadratic temperature dependence at low
temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar
a/e^2 (where "a" is a lattice constant) associated with mean-free paths less
than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a
Drude peak in the optical conductivity. The results presented here are relevant
to a wide range of strongly correlated metals, including transition metal
oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
First Observation of Coherent Production in Neutrino Nucleus Interactions with 2 GeV
The MiniBooNE experiment at Fermilab has amassed the largest sample to date
of s produced in neutral current (NC) neutrino-nucleus interactions at
low energy. This paper reports a measurement of the momentum distribution of
s produced in mineral oil (CH) and the first observation of coherent
production below 2 GeV. In the forward direction, the yield of events
observed above the expectation for resonant production is attributed primarily
to coherent production off carbon, but may also include a small contribution
from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino
flux, the sum of the NC coherent and diffractive modes is found to be (19.5
1.1 (stat) 2.5 (sys))% of all exclusive NC production at
MiniBooNE. These measurements are of immediate utility because they quantify an
important background to MiniBooNE's search for
oscillations.Comment: Submitted to Phys. Lett.
Semidefinite Characterization and Computation of Real Radical Ideals
For an ideal given by a set of generators, a new
semidefinite characterization of its real radical is
presented, provided it is zero-dimensional (even if is not). Moreover we
propose an algorithm using numerical linear algebra and semidefinite
optimization techniques, to compute all (finitely many) points of the real
variety as well as a set of generators of the real radical
ideal. The latter is obtained in the form of a border or Gr\"obner basis. The
algorithm is based on moment relaxations and, in contrast to other existing
methods, it exploits the real algebraic nature of the problem right from the
beginning and avoids the computation of complex components.Comment: 41 page
- …