3,286 research outputs found

    Diffusive benefits of cylinders in front of a Schroeder diffuser

    Get PDF
    A numerical investigation is performed into the diffusive effects of cylinders positioned in front of a Schroeder diffuser. A regular line of cylinders is shown to offer notable improvements to diffusion from a periodic Schroeder device, provided lateral cylinder spacing is incommensurable with the Schroeder period width. Further investigation considers angular dependence and low frequency results in greater detail, as well as the effects on narrowband and modulated Schroeder devices. An optimization procedure is subsequently performed to investigate the effects of an irregular cylinder arrangement, which provides further diffusive benefits. (C) 2010 Acoustical Society of America

    Volumetric diffusers : pseudorandom cylinder arrays on a periodic lattice

    Get PDF
    Most conventional diffusers take the form of a surface based treatment, and as a result can only operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic crystal) produces periodicity lobes and uneven scattering. Introducing defects into an array, by removing or varying the size of some of the cylinders, can enhance their diffusing abilities. This paper applies number theoretic concepts to create cylinder arrays that have more even scattering. Predictions using a Boundary Element Method are compared to measurements to verify the model, and suitable metrics are adopted to evaluate performance. Arrangements with good aperiodic autocorrelation properties tend to produce the best results. At low frequency power is controlled by object size and at high frequency diffusion is dominated by lattice spacing and structural similarity. Consequently the operational bandwidth is rather small. By using sparse arrays and varying cylinder sizes, a wider bandwidth can be achieved

    The observational signature of modelled torsional waves and comparison to geomagnetic jerks

    Get PDF
    Torsional Alfven waves involve the interaction of zonal fluid flow and the ambient magnetic field in the core. Consequently, they perturb the background magnetic field and induce a secondary magnetic field. Using a steady background magnetic field from observationally constrained field models and azimuthal velocities from torsional wave forward models, we solve an induction equation for the wave-induced secular variation (SV). We construct time series and maps of wave-induced SV and investigate how previously identified propagation characteristics manifest in the magnetic signals, and whether our modelled travelling torsional waves are capable of producing signals that resemble jerks in terms of amplitude and timescale. Fast torsional waves with amplitudes and timescales consistent with a recent study of the 6 yr ∆LOD signal induce very rapid, small (maximum ∼2 nT/yr at Earth’s surface) SV signals that would likely be difficult to be resolve in observations of Earth’s SV. Slow torsional waves with amplitudes and timescales consistent with other studies produce larger SV signals that reach amplitudes of ∼20 nT/yr at Earth’s surface. We applied a two-part linear regression jerk detection method to the SV induced by slow torsional waves, using the same parameters as used on real SV, which identified several synthetic jerk events. As the local magnetic field morphology dictates which regions are sensitive to zonal core flow, and not all regions are sensitive at the same time, the modelled waves generally produce synthetic jerks that are observed on regional scales and occur in a single SV component. However, high wave amplitudes during reflection from the stress-free CMB induce large-scale SV signals in all components, which results in a global contemporaneous jerk event such as that observed in 1969. In general, the identified events are periodic due to waves passing beneath locations at fixed intervals and the SV signals are smoothly varying. These smooth signals are more consistent with the geomagnetic jerks envisaged by Demetrescu and Dobrica than the sharp ‘V’ shapes that are typically associated with geomagnetic jerks

    Analysis of BMAA enantiomers in cycads, cyanobacteria, and mammals: in vivo formation and toxicity of D-BMAA

    Get PDF
    We acknowledge support from the John and Josephine Louis Foundation and the Deerbrook Charitable Trust. PBW acknowledges the use of the EPSRC UK National Mass Spectrometry Facility at Swansea University

    Vertical sleeve gastrectomy lowers SGLT2/Slc5a2 expression in the mouse kidney

    Get PDF
    Bariatric surgery improves glucose homeostasis but the underlying mechanisms are not fully elucidated. Here, we show that the expression of sodium glucose cotransporter-2 (SGLT2/Slc5a2) is reduced in the kidney of lean and obese mice following vertical sleeve gastrectomy (VSG). Indicating an important contribution of altered cotransporter expression to the impact of surgery, inactivation of the SGLT2/Slc5a2 gene by CRISPR/Cas9 attenuated the effects of VSG, with glucose excursions following intraperitoneal injection lowered by ∼30% in wild-type mice but by ∼20% in SGLT2 null animals. The effects of the SGLT2 inhibitor dapaglifozin were similarly blunted by surgery. Unexpectedly, effects of dapaglifozin were still observed in SGLT2 null mice, consistent with the existence of metabolically beneficial off-target effects of SGLT2 inhibitors. Thus, we describe a new mechanism involved in mediating the glucose lowering effects of bariatric surgery

    Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid

    Get PDF
    Motivated by the dynamics within terrestrial bodies, we consider a rotating, strongly thermally stratified fluid within a spherical shell subject to a prescribed laterally inhomogeneous heat-flux condition at the outer boundary. Using a numerical model, we explore a broad range of three key dimensionless numbers: a thermal stratification parameter (the relative size of boundary temperature gradients to imposed vertical temperature gradients), 10^−3 ≤ S ≤ 10^4, a buoyancy parameter (the strength of applied boundary heat-flux anomalies), 10^−2 ≤ B ≤ 10^6, and the Ekman number (ratio of viscous to Coriolis forces), 10^−6 ≤ E ≤ 10^−4. We find both steady and time-dependent solutions and delineate the regime boundaries. We focus on steady-state solutions, for which a clear transition is found between a low S regime, in which buoyancy dominates the dynamics, and a high S regime, in which stratification dominates. For the low-S regime, we find that the characteristic flow speed scales as B^2/3, whereas for high-S, the radial and horizontal velocities scale respectively as ur ~ S^−1, uh ~S^−3/4 B^1/4 and are confined within a thin layer of depth (SB)^−1/4 at the outer edge of the domain. For the Earth, if lower mantle heterogeneous structure is due principally to chemical anomalies, we estimate that the core is in the high-S regime and steady flows arising from strong outer boundary thermal anomalies cannot penetrate the stable layer. However, if the mantle heterogeneities are due to thermal anomalies and the heat-flux variation is large, the core will be in a low-S regime in which the stable layer is likely penetrated by boundary-driven flows

    Outcome following surgery for colorectal cancer: analysis by hospital after adjustment for case-mix and deprivation

    Get PDF
    Outcome, adjusted for case-mix and deprivation, in 3200 patients undergoing resection for colorectal cancer in 11 hospitals in Central Scotland between 1991 and 1994 was studied. There were significant differences among individual hospitals in the proportion of elderly (P<0.001) and deprived (P<0.0001) patients, the mode (P=0.007) and stage (P<0.0001) at presentation, and the proportion of patients who underwent apparently curative resection (P<0.001). There were no significant differences in postoperative mortality. Cancer-specific survival at 5 years following apparently curative resection varied from 59 to 76%; cancer-specific survival at 2 years following palliative resection varied from 22 to 44%. The corresponding hazard ratios, adjusted for the above prognostic factors, for patients undergoing apparently curative resection varied among hospitals from 0.58 to 1.32; and the ratios for palliative resection varied from 0.73 to 1.26. This study demonstrates that, after adjustment for variations in case-mix and deprivation, significant differences in outcome among hospitals following resection for colorectal cancer persist

    Kondo effect in an integer-spin quantum dot

    Full text link
    The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechanism in a wide class of correlated electron systems. Control over single, localised spins has become relevant also in fabricated structures due to the rapid developments in nano-electronics. Experiments have already demonstrated artificial realisations of isolated magnetic impurities at metallic surfaces, nanometer-scale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here, we report an unexpected Kondo effect realised in a few-electron quantum dot containing singlet and triplet spin states whose energy difference can be tuned with a magnetic field. This effect occurs for an even number of electrons at the degeneracy between singlet and triplet states. The characteristic energy scale is found to be much larger than for the ordinary spin-1/2 case.Comment: 12 page
    • …
    corecore