78 research outputs found
History of human parasitology.
Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis
Effect of chloroquine on gene expression of Plasmodium yoelii nigeriensis during its sporogonic development in the mosquito vector
<p>Abstract</p> <p>Background</p> <p>The anti-malarial chloroquine can modulate the outcome of infection during the <it>Plasmodium </it>sporogonic development, interfering with <it>Plasmodium </it>gene expression and subsequently, with transmission. The present study sets to identify <it>Plasmodium </it>genes that might be regulated by chloroquine in the mosquito vector.</p> <p>Methods</p> <p>Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. <it>Anopheles stephensi </it>mosquitoes were fed on <it>Plasmodium yoelii nigeriensis</it>-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed <it>Plasmodium </it>transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis.</p> <p>Results</p> <p>Both transcripts were represented in <it>Plasmodium </it>EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine.</p> <p>Conclusion</p> <p>Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two <it>Plasmodium </it>genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling.</p
Pathocenosis: A Holistic Approach to Disease Ecology
The History of medicine describes the emergence and recognition of infectious diseases, and human attempts to stem them. It also throws light on the role of changing environmental conditions on disease emergence/re-emergence, establishment and, sometimes, disappearance. However, the dynamics of infectious diseases is also influenced by the relationships between the community of interacting infectious agents present at a given time in a given territory, a concept that Mirko Grmek, an historian of medicine, conceptualized with the word “pathocenosis”. The spatial and temporal evolution of diseases, when observed at the appropriate scales, illustrates how a change in the pathocenosis, whether of “natural” or anthropic origin, can lead to the emergence and spread of diseases
Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies
Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern
Do Fleas Affect Energy Expenditure of Their Free-Living Hosts?
Parasites can cause energetically costly behavioural and immunological responses which potentially can reduce host fitness. However, although most laboratory studies indicate that the metabolic rate of the host increases with parasite infestation, this has never been shown in free-living host populations. In fact, studies thus far have shown no effect of parasitism on field metabolic rate (FMR).We tested the effect of parasites on the energy expenditure of a host by measuring FMR using doubly-labelled water in free-living Baluchistan gerbils (Gerbillus nanus) infested by naturally occurring fleas during winter, spring and summer. We showed for the first time that FMR of free-living G. nanus was significantly and positively correlated with parasite load in spring when parasite load was highest; this relationship approached significance in summer when parasite load was lowest but was insignificant in winter. Among seasons, winter FMRs were highest and summer FMRs were lowest in G. nanus.The lack of parasite effect on FMR in winter could be related to the fact that FMR rates were highest among seasons. In this season, thermoregulatory costs are high which may indicate that less energy could be allocated to defend against parasites or to compensate for other costly activities. The question about the cost of parasitism in nature is now one of the major themes in ecological physiology. Our study supports the hypothesis that parasites can elevate FMR of their hosts, at least under certain conditions. However, the effect is complex and factors such as season and parasite load are involved
Comparison of Plasmodium berghei challenge models for the evaluation of pre-erythrocytic malaria vaccines and their effect on perceived vaccine efficacy
<p>Abstract</p> <p>Background</p> <p>The immunological mechanisms responsible for protection against malaria infection vary among <it>Plasmodium </it>species, host species and the developmental stage of parasite, and are poorly understood. A challenge with live parasites is the most relevant approach to testing the efficacy of experimental malaria vaccines. Nevertheless, in the mouse models of <it>Plasmodium berghei </it>and <it>Plasmodium yoelii</it>, parasites are usually delivered by intravenous injection. This route is highly artificial and particularly in the <it>P. berghei </it>model produces inconsistent challenge results. The initial objective of this study was to compare an optimized intravenous (IV) delivery challenge model with an optimized single infectious mosquito bite challenge model. Finding shortcomings of both approaches, an alternative approach was explored, <it>i.e</it>., the subcutaneous challenge.</p> <p>Methods</p> <p>Mice were infected with <it>P. berghei </it>sporozoites by intravenous (tail vein) injection, single mosquito bite, or subcutaneous injection of isolated parasites into the subcutaneous pouch at the base of the hind leg. Infection was determined in blood smears 7 and 14 days later. To determine the usefulness of challenge models for vaccine testing, mice were immunized with circumsporozoite-based DNA vaccines by gene gun.</p> <p>Results</p> <p>Despite modifications that allowed infection with a much smaller than reported number of parasites, the IV challenge remained insufficiently reliable and reproducible. Variations in the virulence of the inoculum, if not properly monitored by the rigorous inclusion of sporozoite titration curves in each experiment, can lead to unacceptable variations in reported vaccine efficacies. In contrast, mice with different genetic backgrounds were consistently infected by a single mosquito bite, without overwhelming vaccine-induced protective immune responses. Because of the logistical challenges associated with the mosquito bite model, the subcutaneous challenge route was optimized. This approach, too, yields reliable challenge results, albeit requiring a relatively large inoculum.</p> <p>Conclusions</p> <p>Although a single bite by <it>P. berghei </it>infected <it>Anopheles </it>mosquitoes was superior to the IV challenge route, it is laborious. However, any conclusive evaluation of a pre-erythrocytic malaria vaccine candidate should require challenge through the natural anatomic target site of the parasite, the skin. The subcutaneous injection of isolated parasites represents an attractive compromise. Similar to the mosquito bite model, it allows vaccine-induced antibodies to exert their effect and is, therefore not as prone to the artifacts of the IV challenge.</p
Necator americanus and Helminth Co-Infections: Further Down-Modulation of Hookworm-Specific Type 1 Immune Responses
Parasitic infections in humans are common in tropical regions and under bad housing and sanitation conditions multiple parasitic infections are the rule rather than the exception. For helminth infections, which are thought to affect almost a quarter of the world's population, most common combinations include soil-transmitted helminths, such as hookworm, roundworm, and whipworm, as well as extra-intestinal infections by schistosomes. In order to develop and test a hookworm vaccine in endemic areas, the understanding of the impact of multiple helminth infections (co-infection) on the immune response against hookworm in infected individuals is crucial. The authors report in their article, that several parameters of the cellular (T cell markers, cytokines, chemokines) and humoral immune response (e.g. IgG4 and IgE antibodies) against hookworm are significantly affected or modulated in individuals co-infected with hookworm, roundworm and/or schistosomes. These results imply that the immune response against components of a hookworm vaccine might be altered by previous contact with other helminth species in endemic areas
- …