20,605 research outputs found
Alcove geometry and a translation principle for the Brauer algebra
There are similarities between algebraic Lie theory and a geometric description of the blocks of the Brauer algebra. Motivated by this, we study the alcove geometry of a certain reflection group action. We provide analogues of translation functors for a tower of recollement, and use these to construct Morita equivalences between blocks containing weights in the same facet. Moreover, we show that the determination of decomposition numbers for the Brauer algebra can be reduced to a study of the block containing the weight 0. We define parabolic Kazhdan–Lusztig polynomials for the Brauer algebra and show in certain low rank examples that they determine standard module decomposition numbers and filtrations
A geometric characterisation of the blocks of the Brauer algebra
We give a geometric description of the blocks of the Brauer algebra
in characteristic zero as orbits of the Weyl group of type .
We show how the corresponding affine Weyl group controls the representation
theory of the Brauer algebra in positive characteristic, with orbits
corresponding to unions of blocks.Comment: 26 pages, 24 figure
The blocks of the Brauer algebra in characteristic zero
We determine the blocks of the Brauer algebra in characteristic zero. We also give information on the submodule structure of standard modules for this algebra
Sero-epidemiology of measles, mumps and rubella in St. Lucia and Jamaica
Imperial Users onl
Optimal Transport and Skorokhod Embedding
The Skorokhod embedding problem is to represent a given probability as the
distribution of Brownian motion at a chosen stopping time. Over the last 50
years this has become one of the important classical problems in probability
theory and a number of authors have constructed solutions with particular
optimality properties. These constructions employ a variety of techniques
ranging from excursion theory to potential and PDE theory and have been used in
many different branches of pure and applied probability.
We develop a new approach to Skorokhod embedding based on ideas and concepts
from optimal mass transport. In analogy to the celebrated article of Gangbo and
McCann on the geometry of optimal transport, we establish a geometric
characterization of Skorokhod embeddings with desired optimality properties.
This leads to a systematic method to construct optimal embeddings. It allows
us, for the first time, to derive all known optimal Skorokhod embeddings as
special cases of one unified construction and leads to a variety of new
embeddings. While previous constructions typically used particular properties
of Brownian motion, our approach applies to all sufficiently regular Markov
processes.Comment: Substantial revision to improve the readability of the pape
Representation theory of towers of recollement: Theory, notes, and examples
We give an axiomatic framework for studying the representation theory of towers of algebras. We introduce a new class of algebras, contour algebras, generalising (and interpolating between) blob algebras and cyclotomic Temperley–Lieb algebras. We demonstrate the utility of our formalism by applying it to this class
Model-independent pricing with insider information: a Skorokhod embedding approach
In this paper, we consider the pricing and hedging of a financial derivative
for an insider trader, in a model-independent setting. In particular, we
suppose that the insider wants to act in a way which is independent of any
modelling assumptions, but that she observes market information in the form of
the prices of vanilla call options on the asset. We also assume that both the
insider's information, which takes the form of a set of impossible paths, and
the payoff of the derivative are time-invariant. This setup allows us to adapt
recent work of Beiglboeck, Cox and Huesmann (2016) to prove duality results and
a monotonicity principle, which enables us to determine geometric properties of
the optimal models. Moreover, we show that this setup is powerful, in that we
are able to find analytic and numerical solutions to certain pricing and
hedging problems
- …