4,859 research outputs found
A survey of diffuse interstellar bands in the Andromeda galaxy: optical spectroscopy of M31 OB stars
We present the largest sample to-date of intermediate-resolution blue-to-red
optical spectra of B-type supergiants in M31 and undertake the first survey of
diffuse interstellar bands (DIBs) in this galaxy. Spectral classifications,
radial velocities and interstellar reddenings are presented for 34 stars in
three regions of M31. Radial velocities and equivalent widths are given for the
5780 and 6283 DIBs towards 11 stars. Equivalent widths are also presented for
the following DIBs detected in three sightlines in M31: 4428, 5705, 5780, 5797,
6203, 6269, 6283, 6379, 6613, 6660, and 6993. All of these M31 DIB carriers
reside in clouds at radial velocities matching those of interstellar Na I
and/or H I. The relationships between DIB equivalent widths and reddening
(E(B-V)) are consistent with those observed in the local ISM of the Milky Way.
Many of the observed sightlines show DIB strengths (per unit reddening) which
lie at the upper end of the range of Galactic values. DIB strengths per unit
reddening are found (with 68% confidence), to correlate with the interstellar
UV radiation field strength. The strongest DIBs are observed where the
interstellar UV flux is lowest. The mean Spitzer 8/24 micron emission ratio in
our three fields is slightly lower than that measured in the Milky Way, but we
identify no correlation between this ratio and the DIB strengths in M31.
Interstellar oxygen abundances derived from the spectra of three M31 H II
regions in one of the fields indicate that the average metallicity of the ISM
in that region is 12 + log[O/H] = 8.54 +- 0.18, which is approximately equal to
the value in the solar neighbourhood
Neurogenesis Deep Learning
Neural machine learning methods, such as deep neural networks (DNN), have
achieved remarkable success in a number of complex data processing tasks. These
methods have arguably had their strongest impact on tasks such as image and
audio processing - data processing domains in which humans have long held clear
advantages over conventional algorithms. In contrast to biological neural
systems, which are capable of learning continuously, deep artificial networks
have a limited ability for incorporating new information in an already trained
network. As a result, methods for continuous learning are potentially highly
impactful in enabling the application of deep networks to dynamic data sets.
Here, inspired by the process of adult neurogenesis in the hippocampus, we
explore the potential for adding new neurons to deep layers of artificial
neural networks in order to facilitate their acquisition of novel information
while preserving previously trained data representations. Our results on the
MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes
lower and upper case letters and digits, demonstrate that neurogenesis is well
suited for addressing the stability-plasticity dilemma that has long challenged
adaptive machine learning algorithms.Comment: 8 pages, 8 figures, Accepted to 2017 International Joint Conference
on Neural Networks (IJCNN 2017
First-Year Vitality of Reforestation Plantings in Response to Herbivore Exclusion on Reclaimed Appalachian Surface-Mined Land
Conventional Appalachian surface-mine reclamation techniques repress natural forest regeneration, and tree plantings are often necessary for reforestation. Reclaimed Appalachian surface mines harbor a suite of mammal herbivores that forage on recently planted seedlings. Anecdotal reports across Appalachia have implicated herbivory in the hindrance and failure of reforestation efforts, yet empirical evaluation of herbivory impacts on planted seedling vitality in this region remains relatively uninitiated. First growing-season survival, height growth, and mammal herbivory damage of black locust (Robinia pseudoacacia L.), shortleaf pine (Pinus echinata Mill.), and white oak (Quercus alba L.) are presented in response to varying intensities of herbivore exclusion. Seedling survival was generally high, and height growth was positive for all species. The highest herbivory incidence of all tree species was observed in treatments offering no herbivore exclusion. While seedling protectors lowered herbivory incidence compared with no exclusion, full exclusion treatments resulted in the greatest reduction of herbivore damage. Although herbivory from rabbits, small mammals, and domestic animals was observed, cervids (deer and elk) were responsible for 95.8% of all damaged seedlings. This study indicates that cervids forage heavily on planted seedlings during the first growing-season, but exclusion is effective at reducing herbivory
First Detection of HCO+ Emission at High Redshift
We report the detection of HCO+(1-0) emission towards the Cloverleaf quasar
(z=2.56) through observations with the Very Large Array. This is the first
detection of ionized molecular gas emission at high redshift (z>2). HCO+
emission is a star formation indicator similar to HCN, tracing dense molecular
hydrogen gas (n(H_2) ~= 10^5 cm^{-3}) within star-forming molecular clouds. We
derive a lensing-corrected HCO+ line luminosity of L'(HCO+) = 3.5 x 10^9 K km/s
pc^2. Combining our new results with CO and HCN measurements from the
literature, we find a HCO+/CO luminosity ratio of 0.08 and a HCO+/HCN
luminosity ratio of 0.8. These ratios fall within the scatter of the same
relationships found for low-z star-forming galaxies. However, a HCO+/HCN
luminosity ratio close to unity would not be expected for the Cloverleaf if the
recently suggested relation between this ratio and the far-infrared luminosity
were to hold. We conclude that a ratio between HCO+ and HCN luminosity close to
1 is likely due to the fact that the emission from both lines is optically
thick and thermalized and emerges from dense regions of similar volumes. The
CO, HCN and HCO+ luminosities suggest that the Cloverleaf is a composite
AGN--starburst system, in agreement with the previous finding that about 20% of
the total infrared luminosity in this system results from dust heated by star
formation rather than heating by the AGN. We conclude that HCO+ is potentially
a good tracer for dense molecular gas at high redshift.Comment: 5 pages, 3 figures, ApJL, in press (accepted May 17, 2006
Detection of Emission from the CN Radical in the Cloverleaf Quasar at z=2.56
We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar
(z=2.56) based on observations with the IRAM Plateau de Bure Interferometer.
This is the first clear detection of emission from this radical at high
redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4
cm^{-3}) within star-forming molecular clouds, in particular in regions where
the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used
as a diagnostic for the relative importance of photodissociation regions (PDRs)
in a source, and as a sensitive probe of optical depth, the radiation field,
and photochemical processes. We derive a lensing-corrected CN(N=3-2) line
luminosity of L'(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between
CN luminosity and far-infrared luminosity falls within the scatter of the same
relationship found for low-z (ultra-) luminous infrared galaxies. Combining our
new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and
assuming thermal excitation for all transitions, we find a CO/CN luminosity
ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However,
we find that the CN(N=3-2) line is likely only subthermally excited, implying
that those ratios may only provide upper limits for the intrinsic 1-0 line
luminosity ratios. We conclude that, in combination with other molecular gas
tracers like CO, HCN, and HCO+, CN is an important probe of the physical
conditions and chemical composition of dense molecular environments at high
redshift.Comment: 6 pages, 5 figures, 1 table, to appear in ApJ (accepted May 23, 2007
Comparative mitogenomic analyses and gene rearrangements reject the alleged polyphyly of a bivalve genus
Background: The order and orientation of genes encoded by animal mitogenomes are typically conserved, although there is increasing evidence of multiple rearrangements among mollusks. The mitogenome from a Brazilian brown mussel (hereafter named B1) classified as Perna perna Linnaeus, 1758 and assembled from Illumina short-length reads revealed an unusual gene order very different from other congeneric species. Previous mitogenomic analyses based on the Brazilian specimen and other Mytilidae suggested the polyphyly of the genus Perna.
Methods: To confirm the proposed gene rearrangements, we sequenced a second Brazilian P. perna specimen using the "primer-walking" method and performed the assembly using as reference Perna canaliculus. This time-consuming sequencing method is highly effective when assessing gene order because it relies on sequentially-determined, overlapping fragments. We also sequenced the mitogenomes of eastern and southwestern South African P. perna lineages to analyze the existence of putative intraspecific gene order changes as the two lineages show overlapping distributions but do not exhibit a sister relationship.
Results: The three P. perna mitogenomes sequenced in this study exhibit the same gene order as the reference. CREx, a software that heuristically determines rearrangement scenarios, identified numerous gene order changes between B1 and our P. perna mitogenomes, rejecting the previously proposed gene order for the species. Our results validate the monophyly of the genus Perna and indicate a misidentification of B1.info:eu-repo/semantics/publishedVersio
Luminous Infrared Galaxies with the Submillimeter Array: I. Survey Overview and the Central Gas to Dust Ratio
We present new data obtained with the Submillimeter Array for a sample of
fourteen nearby luminous and ultraluminous infrared galaxies. The galaxies were
selected to have luminosity distances D < 200 Mpc and far-infrared luminosities
log(L_FIR) > 11.4. The galaxies were observed with spatial resolutions of order
1 kpc in the CO J=3-2, CO J=2-1, 13CO J=2-1, and HCO+ J=4-3 lines as well as
the continuum at 880 microns and 1.3 mm. We have combined our CO and continuum
data to measure an average gas-to-dust mass ratio of 120 +/- 28 (rms deviation
109) in the central regions of these galaxies, very similar to the value of 150
determined for the Milky Way. This similarity is interesting given the more
intense heating from the starburst and possibly accretion activity in the
luminous infrared galaxies compared to the Milky Way. We find that the peak H_2
surface density correlates with the far-infrared luminosity, which suggests
that galaxies with higher gas surface densities inside the central kiloparsec
have a higher star formation rate. The lack of a significant correlation
between total H_2 mass and far-infrared luminosity in our sample suggests that
the increased star formation rate is due to the increased availability of
molecular gas as fuel for star formation in the central regions. In contrast to
previous analyses by other authors, we do not find a significant correlation
between central gas surface density and the star formation efficiency, as trace
by the ratio of far-infrared luminosity to nuclear gas mass. Our data show that
it is the star formation rate, not the star formation efficiency, that
increases with increasing central gas surface density in these galaxies.Comment: 66 pages, 39 figures, aastex preprint format; to be published in ApJ
Supplements. Version of paper with full resolution figures available at
http://www.physics.mcmaster.ca/~wilson/www_xfer/ULIRGS_publi
The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers
We assess the impact of starburst and AGN feedback-driven winds on the CO
emission from galaxy mergers, and, in particular, search for signatures of
these winds in the simulated CO morphologies and emission line profiles. We do
so by combining a 3D non-LTE molecular line radiative transfer code with
smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that
include prescriptions for star formation, black hole growth, a multiphase
interstellar medium (ISM), and the winds associated with star formation and
black hole growth. Our main results are: (1) Galactic winds can drive outflows
of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2)
AGN feedback-driven winds are able to drive imageable CO outflows for longer
periods of time than starburst-driven winds owing to the greater amount of
energy imparted to the ISM by AGN feedback compared to star formation. (3)
Galactic winds can control the spatial extent of the CO emission in post-merger
galaxies, and may serve as a physical motivation for the sub-kiloparsec scale
CO emission radii observed in local advanced mergers. (4) Secondary emission
peaks at velocities greater than the circular velocity are seen in the CO
emission lines in all models. In models with winds, these high velocity peaks
are seen to preferentially correspond to outflowing gas entrained in winds,
which is not the case in the model without winds. The high velocity peaks seen
in models without winds are typically confined to velocity offsets (from the
systemic) < 1.7 times the circular velocity, whereas the models with AGN
feedback-driven winds can drive high velocity peaks to ~2.5 times the circular
velocity.Comment: Accepted by ApJ; Minor revisions; Resolution tests include
Effect of Drinking Rate on the Retention of Water or Milk Following Exercise-Induced Dehydration
This study investigated the effect of drinking rate on fluid retention of milk and water following exercise-induced dehydration. In Part A, 12 male participants lost 1.9% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water or low-fat milk equal to the volume of sweat lost during exercise was provided. Beverages were ingested over 30 or 90 min, resulting in four beverage treatments: water 30 min, water 90 min, milk 30 min, and milk 90 min. In Part B, 12 participants (nine males and three females) lost 2.0% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water equal to the volume of sweat lost during exercise was provided. Water was ingested over 15 min (DR15), 45 min (DR45), or 90 min (DR90), with either DR15 or DR45 repeated. In both trials, nude body mass, urine volume, urine specific gravity and osmolality, plasma osmolality, and subjective ratings of gastrointestinal symptoms were obtained preexercise and every hour for 3 hr after the onset of drinking. In Part A, no effect of drinking rate was observed on the proportion of fluid retained, but milk retention was greater (p
- …