4,111 research outputs found

    An examination of adverse drug reaction reporting to the yellow card scheme

    Get PDF
    Chief pharmacists in 209 hospitals were surveyed about ADR reporting schemes, the priority given to ADR reporting, and attitudes towards ADR reporting. ADR reporting had a low managerial priority. Local reporting schemes were found to be operating in 37% trusts, but there were few plans to start new schemes. Few problems were discovered by the introduction of pharmacist ADR reporting. Chief pharmacists had concerns about the competence of hospital pharmacists to detect ADRs and were in favour of increased training. Lack of time on wards, and recruitment difficulties were suggested as reasons for hospital pharmacist under-reporting. Teaching hospitals appeared to have an increased interest in ADR reporting. A retrospective analysis of reporting trends within the West Midlands region from 1994, showed increasing or stable reporting rates for most sectors of reporters, except for general practitioners (GPs). The West Midlands region maintained higher ADR reporting rates than the rest of the UK. National reporting figures showed a worrying decline in ADR reports from healthcare professionals. Variation was found in the ADR reporting rates of Acute NHS Hospital Trusts and Primary Care Trusts (PCTs) in the West Midlands region, including correlations with prescribing rates and other PCT characteristics. Qualitative research into attitudes of GPs towards the Yellow Card scheme was undertaken. A series of qualitative interviews with GPs discovered barriers and positive motivators for their involvement in the Yellow Card scheme. A grounded theory of GP involvement in the Yellow Card scheme was developed to explain GP behaviour, and which could be used to inform potential solutions to halt declining rates of reporting. Under-reporting of ADRs continues to be a major concern to those who administer spontaneous reporting schemes

    A Natural Plasmid Uniquely Encodes Two Biosynthetic Pathways Creating a Potent Anti-MRSA Antibiotic

    Get PDF
    Background Understanding how complex antibiotics are synthesised by their producer bacteria is essential for creation of new families of bioactive compounds. Thiomarinols, produced by marine bacteria belonging to the genus Pseudoalteromonas, are hybrids of two independently active species: the pseudomonic acid mixture, mupirocin, which is used clinically against MRSA, and the pyrrothine core of holomycin. Methodology/Principal Findings High throughput DNA sequencing of the complete genome of the producer bacterium revealed a novel 97 kb plasmid, pTML1, consisting almost entirely of two distinct gene clusters. Targeted gene knockouts confirmed the role of these clusters in biosynthesis of the two separate components, pseudomonic acid and the pyrrothine, and identified a putative amide synthetase that joins them together. Feeding mupirocin to a mutant unable to make the endogenous pseudomonic acid created a novel hybrid with the pyrrothine via “mutasynthesis” that allows inhibition of mupirocin-resistant isoleucyl-tRNA synthetase, the mupirocin target. A mutant defective in pyrrothine biosynthesis was also able to incorporate alternative amine substrates. Conclusions/Significance Plasmid pTML1 provides a paradigm for combining independent antibiotic biosynthetic pathways or using mutasynthesis to develop a new family of hybrid derivatives that may extend the effective use of mupirocin against MRSA

    Stratospheric processes: Observations and interpretation

    Get PDF
    Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes

    Use of information sources regarding medicine side effects among the general population: a cross-sectional survey

    Get PDF
    Aim:To determine the use and perceived value of different information sources that patients may use to support identification of medicine side effects; to explore associations between coping styles and use of information sources. Background:Side effects from medicines can have considerable negative impact on peoples’ daily lives. As a result of an ageing UK population and attendant multi-morbidity, an increasing number of medicines are being prescribed for patients, leading to increased risk of unintended side effects. Methods: A cross-sectional survey of patients who use medicine, recruited from community pharmacies. The survey sought views on attributes of various information sources, their predicted and actual use, incorporating a shortened Side Effects Coping Questionnaire (SECope) scale and the abbreviated Miller Behavioural Style Scale (MBSS). Findings: Of 935 questionnaires distributed, 230 (25.0%) were returned, 61.3% from females; 44.7% were retired and 84.6% used at least one medicine regularly. 69.6% had experienced a side effect, resulting in 57.5% of these stopping the medicine. Patient information leaflets (PILs) and GPs were both predicted and actually most widely used sources, despite GPs being judged as relatively less accessible and PILs less trustworthy, particularly by regular medicine users. Pharmacists, considered both easy to access and trustworthy, were used by few in practice, while the internet was considered easy to access, but less trustworthy and was also little used. SECope sub-scales for non-adherence and information seeking showed positive associations with stopping a medicine and seeking information from a health professional. More high monitors than low monitors stopped a medicine themselves, but there were no differences in use of information sources. Information seeking following a side effect is a common strategy, potentially predicted by the SECope, but not the MBSS. Limited GP accessibility could contribute to high internet use. Further research could determine how the trustworthiness of PILs can be improved

    Optimizing Colloidal Stability and Transport of Polysaccharide-Coated Magnetic Nanoparticles for Reservoir Management: Effects of Ion Specificity

    Get PDF
    In this work we explore the mechanisms of ion-specific stabilization of a polysaccharide-based coating for colloidal nanomaterials used within the oil & gas industry. While nanotechnology has wide prevalence across multiple industries, its utility within this sector is largely undeveloped but has potential applications in areas including (but not limited to) exploration, drilling and production processes. For example, reservoir contrast agents in the form of superparamagnetic nanoparticles could be used to accurately determine the residual oil saturation distribution in a reservoir and thus advise enhanced oil recovery (EOR) efforts. However, deployment of such materials in oil reservoirs proves challenging in cases where high salinity subsurface environments induce nanoparticle aggregation, leading to loss of mobility. Here, we report the synthesis and characterization of dextran-coated superparamagnetic iron oxide nanoparticles (Dex-SPIONs), the colloidal stability of which was evaluated in various brine formulations at elevated temperatures. Initial dynamic light scattering (DLS) measurements reveal a lack of contingency between particle stability and total electrolyte concentration for samples comprised of synthetic seawater and low-salinity brine, the latter fluid of which possesses higher ionic strength yet preserves colloidal integrity to a much greater extent than its seawater counterpart. Further experiments point to a calcium (Ca2+) ion-specific stabilization effect wherein surface complexation of Ca2+ ions to the dextran periphery improves carbohydrate hydration and thus enhances colloidal stability. Ion selective electrode (ISE) measurements provide additional evidence of the Ca2+ - dextran binding interaction, the role of which also factors significantly into mitigation of polysaccharide degradation [as demonstrated through gel permeation chromatography (GPC)]. Finally, we assess the transport of Dex-SPIONs through porous media, including examination of retention properties with respect to variances in ionic composition
    corecore