6,619 research outputs found
How to do things without words
Clark and Chalmers (1998) defend the hypothesis of an ‘Extended Mind’, maintaining that beliefs and other paradigmatic mental states can be implemented outside the central nervous system or body. Aspects of the problem of ‘language acquisition’ are considered in the light of the extended mind hypothesis. Rather than ‘language’ as typically understood, the object of study is something called ‘utterance-activity’, a term of art intended to refer to the full range of kinetic and prosodic features of the on-line behaviour of interacting humans. It is argued that utterance activity is plausibly regarded as jointly controlled by the embodied activity of interacting people, and that it contributes to the control of their behaviour. By means of specific examples it is suggested that this complex joint control facilitates easier learning of at least some features of language. This in turn suggests a striking form of the extended mind, in which infants’ cognitive powers are augmented by those of the people with whom they interact
The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field
Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF)
Cs2CuCl4 have been measured as a function of magnetic field using neutron
scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D
incommensurate ordering. Fields greater than Bc =1.66 T, but less than the
field (~8 T) required to fully align the spins, are observed to decouple the
chains, and the system enters a disordered intermediate-field phase (IFP). The
IFP excitations are in agreement with the predictions of Muller et al. for the
1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the
Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave
theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published
in PRL, e-mail comments to [email protected]
Recommended from our members
Synthesis and Coordination Compounds of A Bis(Imino)Acenaphthene (Bian)-Supported N-Heterocyclic Carbene
The bis(imino)acenaphthene-supported N-heterocyclic carbene IPr(BIAN) has been prepared by deprotonation of the precursor imidazolium chloride. Treatment of IPr(BIAN) imidazolium chloride with Ag(2)O afforded the silver complex [IPr(BIAN)]AgCl which can be converted into the corresponding gold complex [IPr(BIAN)]AuCl by reaction with (tht)AuCl (tht = tetrahydrothiophene). The iridium complex [IPr(BIAN)]Ir(COD)Cl was prepared by reaction of the imidazolium chloride with KO(t)Bu and [Ir(COD)Cl](2) and subsequently converted to the carbonyl complex [IPr(BIAN)]Ir(CO)(2)Cl by exposure to an atmosphere of CO. All new compounds were characterized by single-crystal X-ray diffraction, multinuclear NMR, MS and HRMS data.Robert A. Welch Foundation F-0003National Science Foundation 0741973Chemistr
Temperature Evolution of the Quantum Gap in CsNiCl3
Neutron scattering measurements on the one-dimensional gapped S=1
antiferromagnet, CsNiCl3, have shown that the excitation corresponding to the
Haldane mass gap Delta at low temperatures persists as a resonant feature to
high temperatures. We find that the strong upward renormalisation of the gap
excitation, by a factor of three between 5 and 70K, is more than enough to
overcome its decreasing lifetime. We find that the gap lifetime is
substantially shorter than that predicted by the scaling theory of Damle and
Sachdev in its low temperature range of validity. The upward gap
renormalisation agrees with the non-linear sigma model at low temperatures and
even up to T of order 2Delta provided an upper mass cutoff is included.Comment: Latex, 3 figures, accepted by Pysical Review
Modem design for a MOBILESAT terminal
The implementation is described of a programmable digital signal processor based system, designed for use as a test bed in the development of a digital modem, codec, and channel simulator. Code was written to configure the system as a 5600 bps or 6600 bps QPSK modem. The test bed is currently being used in an experiment to evaluate the performance of digital speech over shadowed channels in the Australian mobile satellite (MOBILESAT) project
A Boundary-layer Model for Balanced Arcs
Boundary layer model for two dimensional arcs held stationary against gas stream drag by force of imposed transverse magnetic fiel
Orbital and Spin Excitations in Cobalt Oxide
By means of neutron scattering we have determined new branches of magnetic
excitations in orbitally active CoO (TN=290 K) up to 15 THz and for
temperatures from 6 K to 450 K. Data were taken in the (111) direction in six
single-crystal zones. From the dependence on temperature and Q we have
identified several branches of magnetic excitation. We describe a model for the
coupled orbital and spin states of Co2+ subject to a crystal field and
tetragonal distortion.Comment: To be published in Physica B (Proceedings of SCES07 conference in
Houston
Recommended from our members
Group 13 Decamethylmetallocenium Cations
Salts containing the decamethylmetallocenium cations, [( C5Me5) M-2](+) ( or Cp*M-2(+)) of the group 13 "metals" B, Al and Ga have been prepared using a variety of synthetic routes. Precursor molecules of the type Cp*2MX ( X = Cl, Br, Me) exhibit structural features that vary significantly depending on the size and electronegativity of the central atom. While salt metathesis, halide abstraction and methanide abstraction methods represent viable routes for the preparation of salts of Cp*B-2(+) and Cp*Al-2(+), acidolysis of a Cp* group from Cp*Ga-3 is the most reliable method for the synthesis of the analogous gallium cation. Gallocenium cations are less stable than either of the lighter congeneric cations since they prove to be susceptible to decomposition reactions involving the "back-transfer" of ligands from the counter anion. Density functional theory (DFT) calculations revealed that, whereas Cp*Ga-2(+) is predicted to adopt a molecular structure more similar to that of Cp*B-2(+), the electronic structure of the gallium cation bears a greater resemblance to that of Cp*Al-2(+).Chemistr
- …