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ABSTRACT

The report discusses two-dimensional arcs which are held stationary
against the drag of a stream of gas by the force due to an imposed,
transverse, magnetic field., 1In the proposed model, the arc column is a
region which is by-passed by the external stream, but which contains an
internal circulatory flow. The effective Reynolds number of the circula-
tion is high enocugh to justify, as a possible and interesting limit, an
analysis in which the action of viscosity and heat conduction are assumed
to be confined to thin layers, Gas is supposed to drift forward slowly
in an inviscid core of the arc and to be returned rapidly in thin shear
layers at the edges. An important consequence is that the state of the
gas must be constant along a field line in the core, and the model would
be invalid if eny field lines are closed within the column.

A solution is found to the equations governing the shear layers in
the vicinity of the forward stagnation point of the arc. The velocity
profile is peaked, having a ratio of maximum velocity to local value of
the external flow approximately equal to one half the square root of the
density ratio across the layer. It is shown that, in the subsequent
development beyond the stagnation point, the temperature of the gas within
the layer may rise above the core value, and flow reversal will be associ=-
ated with this temperature over-shoot, It is suggested that the phenomenon

marks the start of separation of inner and outer flow.
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A qualitative discussion suggests that the action of electromotive
forces induced by the flow reduces velocity levels in the shear layers
and thickens them, while longitudinal flows, predominantly from cathode
to anode, are caused by the Hall effect. The theory is not sufficiently
developed to predict overall arc behaviour closely, but some similarity
conditions can be found, and order-of-magnitude estimates made of size
and external flow velocity for a range of values of current and imposed

field,
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PREFACE

This theoretical study was undertaken during the period of sabbatical
leave spent by{the author at the Massachusetts Institute of Technology.
The report marks the end of the period, and, although the theory has not
reached a satisfactory state of completion, time prevents the author from
further work. Perhaps a stage has been reached where some experimental
confirmation will do more good than any amount of analysis.

Arcs form a complex topic, and it is only the belief that the be-
haviour of some balanced arcs can be dominated by fluid-mechanic effects
that has given the author, who is inexperienced in electrode phenomena,
the courage to embark on the study. A tribute should be paid to Professor
J. A. Fay and Dr. M. Goldstein; many of the ideas evolved from co-operative
efforts during discussions with them., Fay was the first to point out
that external and internal pressure distributions could be matched at the
stagnation point of an arc and contributed particularly to the ideas on
core behaviour., The comments of Professor D. Hoult added stimulation, and
his interest in buoyant plumes influenced the theory because of an analogy

between magnetic forces in arcs and buoyancy forces,
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I, INTRODUCTION

Figure 1 shows a cross-section to illustrate what is meant by a
balanced arc. The luminous column of ionized gas, where the current
flows, is held stationary against a.transverse stream by magnetic forces,
We assume that the section of arc under consideration is far enough
from the electrodes for the flow and magnetic field patterns to be re-
garded as two-dimensional. For a start, we neglect flow along the column
although it will be shown in Section V that the Hall effect can cause
such flow, With the assumption of two-dimensionality, a magnetic field

-5
B0 must be imposed by external coils to cause a net force on the column,

-’
Uniform B_ gives the simplest circumstances, and then the total force is

0
IB0 per unit length. This must be balanced by the loss of momentum of
the stream, or aerodynamic drag. Another overall condition is that the
total electromagnetic energy supplied must equal the loss due to radia-
tion and convection by the stream.

The hypothesis of Lordl that the aerodynamic drag is approximately
the same as that 6f a solid cylinder having the same dimensions as the
arc suggests that mostrof the stream is diverted round the column, and a
relatively stagnant wake is formed behind. The hypothesis has had some
experimental verification in cases where arc dimensions have been measured
(for a review see Myers and Romanz). With this success, a not surprising
conJectﬁre is that at leasﬁ a major part of the column is a region of

closed streamlines, impervious to the outer flow (see, for example,

Kuethe et al.3). The recent experiments of Roman and Myersh on arcs in a
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cross flow of air support this view with results of investigations by
pitot traverse behind the column, which indicate a stagnant wake, and
by injection of particles upstream, which showed no tendency to enter
the column, being apparently swept round and shed in vortices similar
to those found at the edges of conventional wakes,

The object of the present investigation is to explore the detailed
fluid-mechanic behaviour in and near the column on the assumption that
the arc is impervious, i.e., there is a forward stagnation point., The
suggested model for the flow pattern is broadly that a double vortex
forms in a large part of the interior (see Fig, 2a). (The discussion
of flow reversal in Section IV, however, suggests that in detail more
than two distinct vortices could be formed.) The mechanisms which could
drive the motion are two, First is the shearing action of the external
stream, which we shall find to be the less important, The second is
the rotational nature of the magnetic forces. Suppose that we neglect
the electro-motive forces generated by the motion and the Hall effect,
Then the magnetic forces tend to change the circulation round the loop

ABCDA of Fig. 2a according to

ar -+ > e
Ty éij'dl/p

§ (a/p) ExB - at

E§(c/p)g' dn

%,%- E § (a/p) do, (1)
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where ¢n is the outward normal flux per unit length of the column at the

loop, and, in deriving Eq. (1) we have used the fact that E, being

perpendicular to the plane of variation, must be uniform for curl E = 0,
We expect the mean level of ¢/p to be very much lower on the cold

leg of the loop ABC than on the hot leg CDA, Then with an imposed,
C

transverse field so that we have J d¢n # 0, there results a mechanism

A
for inducing circulation. The action of the magnetic forces, which are

temperature dependent through o, has an analogy with that of buoyancy
forces in natural-convection problems - an analogy noted also by Kuethe
et a1.3 and one which we shall pursue further, A field line corresponds
to a line of constant height so that variation of ¢ along a field line
gives a rotational force (see Fig. 2b).

For a steady state the tendency of the magnetic force to increase
circulation must be balanced by suppression due to viscous damping.

A characteristic velocity uo for the circulation is found by relating
the time scale in Eq. (1) to R/uo, where we take the nose radius R to be

typical of arc dimensions, and by relating T to uOR. Thus

uo = /(oo EBO R/po) . (2)

wvhere the superscript 0 on the quantities o, B, p, also refers to charac-
teristic values for the interior flow. This velocity can be related to

that of the free stream by defining the drag coefficient as

cp = (no® EB® R)/(p2) = 0(1) . (3)
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Then

w0 = uw//{(Cme)/(2pow)} s (k)

which suggests that the rotational effect of the magnetic forces is larger

than that of the shearing action of the free stream by a factor of order

/ (pwlpo).

The square of the Reynolds number based on the characteristic velocity

is

2
G = po o’ E BOR3/nO . (5)

Following Kuethe et al.3, we call this quantity the Grasshof number, since
it has the same significance as the Grasshof number in natural-convection
problems. Relating G to the Reynolds number based on free~stream properties

and velocity by means of Eq. (3), we obtain
G = (Cp/m) (po/pm) (nw/no)2 Rez . (6)

The quantity (po/pm)(nm/no)2, which appears in Eq. (6), is plotted in
Fig. 3 for air assuming atmospheric pressure, a free-stream temperature of

300°K, and thermodynamic equilibrium (property values were taken from the

%)

report of Arave et al.

10-h Re’ (assuming Cp = 0(1)). The experiments of Roman and Myersh, for

« A reasonably representative value of G is then



which size of arc and blowing velocity are well documented, gave a range

for Re from 103 to 10", i.e., 6 ¥ 102 - 10,

The values of G given above suggest that there can be at least a

range of arc conditions for which inertia effects in the column are strong

1/

2 is the effective Reynolds number for circulation). Now in

/b

(recall G
problems of natural convection G1 is the scaling for boundary-layer

thickness (see, for example the boundary layer on a heated vertical plate).
With large values of Gllh it is possible that a successful model of the arc
can be found in which viscous effects are confined to thin layers, and the
following theory represents a start on such a model, However, the experi-
mental range of Roman and Myersh did not extend to high enough values,

and the analysis will be a limit, hopefully to be approached by known arcs.

II. APPROXIMATIONS

2.1 THE MODEL

Fig. 4 illustrates our model for the forward part of the arc column,
We suppose that the action of viscosity and heat oonduction is negligible
except in thin shear layers at the edge., The gas moves forward in an in-
viscid core, and, being entrained by the shear layers, is swept back in
them, Note that the supposed entrainment provides a mechanism to counteract
viscous diffusion, The validity of the model rests with our being able to
find a solution which satisfactorily matches the outer inviscid flow to the
inner and then to show that assumptions about the action of diffusion
processes were valid., It is possible to give some justification by con-
sidering the expected orders of magnitude,

Again we assume that the nose radius R is typical of arc dimensions,

both parallel and transverse to the free stream. The fact that CD = 0(1)
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suggests that pressure gradients are of order 00 EBO. When a fluid
particle enters the shear layers, it may be cooled to a temperature at
which it is virtually non-conducting, while still being hot enough to
have a density comparable to the core. Thus, in being swept back, the
particle experiences little magnetic force, but can fall through a
pressure difference O(oO EBO R), and, according to Eq. (2), it can thereby
attain a speed of the order of the characteristic velocity uo. Note
that, by reason of continuity, the core velocity will be O(uOG/R), where
§ is the shear-layer thickness, and exterior velocities will be

O{uol (oo/pm)}, i.e., the velocity profile is peaked., Viscous shear
stress in the layers will be O(nOuO/Ge),and, assuming viscous forces com-

parable to inertia forces, we obtain the expected result for thickness:
0, 00 -1/4
s/R = /n%7(% R)) = 67 (1)

We are suggesting that the shear layers are regions where pressure,
inertia, magnetic and viscous forces are all comparable. However, the low

velocity in the core implies that both inertia and viscous forces are

-1/2y

negligible there in comparison to magnetic (being 0(G , and there

must be & balance between pressure and magnetic forces only.

As in conventional boundary and shear layers, continuity gives a

-1/k
OG 1/ ); viscous stresses would require pressure

differences across the layer only of order G°1/2. However, since the

transverse velocity O(u

magnetic force may have a large component perpendicular to the layer,

1/h

transverse magnetic forces can cause a pressure difference 0(G ') - the




vicinity of the stagnation point needs special consideration (see Section
2.4). Also accelerations due to curvature require pressure differences

O(G'l/h)

» and it is only to this low order of approximation that we can
take pressure to be continuous across the layer.

We now turn to the energetic aspects of the model, In the same way
that the entrainment provides a mechanism to counteract viscous diffusion
of the layers, it will also counteract thermal diffusion, and for Prandtl
number P = 0(1) we expect the scale for thermal and viscous layers to be
the same. (An additional reason for assuming the same scale is the
coupling between energy and momentum through the temperature-dependent
forces., Thus for P » O, the velocity scale is determined by thermal
diffusion.) Gradients of enthalpy across the layer are O(ho/d), and it
is assumed that the enthalpy difference between the rear of the column
and the forward stagnation point is O(ho), so that gradients in the core
are O(hO/R). Supposing that radiation does not absorb a major part of the
power input, the heat loss across the layer O(nOhOR/PG) has to be comparable
to the power input to the whole arc 0(0o E2R2). From the small area of
the layers it follows that in comparison to both conduction and convection

(c™1/%)

terms the electromagnetic power in the layer is O and may be

neglected to a low order of approximation. In the core, convection is

1/4 Og=1/k)

reduced by G since the velocity is O(u s S0 that convection and

pover input can balance, while conduction is reduced by Gl/2

1/h

, i.e. compared
to convection, conduction is o(G™ ) in the core and may be neglected to
a low order of approximation,

Aspects which we leave for later consideration are the electromotive

forces and the Hall effect,
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2.2 CORE EQUATIONS AND BEHAVIOUR

According to the order-of-magnitude considerations of the last section,

c=1/4y)

the force balance in the core requires (neglecting terms Of

grad p = (8)

Sl g
»
=+
1t
Q
B+
b
=27
L 4

and there can be no pressure variation along a field line., The distance
between adjacent>lines is inversely proportional to B, so that grad p
varies like B along a field line. Since E is uniform and perpendicular to
ﬁ, it follows that Eq. (8) can only be satisfied if o as well as p is

constant along any field line, i.e., the state of the gas does not vary in

=
the direction of B.

A departure of order only g~1/%

from the balance of Eq. (8) is capable
of giving any velocity changes required in the core, but a condition is
imposed by the energy equation for a fluid particle:

dh 2 o
P =O E"=q , (9)

where é represents the radiation, and we assume that there is negligible
absorption so that i is a function of the local state only. Hence dh/dt
is constant on any one field line, and, since dh is the same for all fluid
particles as they travel between adjacent lines, it follows that the time

of flight dt is the same, Then the velocity component normal to a field

line varies like 1/B along it. A geometric illustration of the above

arguments is given in Fig. 5a,




To determine the megnitude of the velocity component normal to the
magnetic field, we use the continuity condition and equate the total mass
flow crossing any field line in the core between the points where it
intersects the boundaries (ab of Fig. 5b) to the mass flow back in the
shear layers. (The velocity component parallel to the magnetic field can
be derived from the continuity equation, but we have found no simple, yet
general, relation for this component.)

Assuming the arc to be symmetric about an axis through the forward
stagnation point and parallel to the free stream, we shall consider the
overall energy and continuity for one side of this axis. Suppose 65 to
be the area between two adjacent field lines (shown cross~hatched in Fig.
Sb). The power input less radiation is (0E2 - é) §S to this area, Let x
denote a co-ordinate measured along a shear layer with origin at the
stagnation point. Then, from the order-of-magnitude arguments of Section

OG-l/h

2.1, we expect entrainment velocities O(u ) and, to anticipate the

shear-layer definitions of Section 2.4, we define the entrainment at any
. 0.0.-1/4, ,_, S e .
point as pu G (pcvc), where plv! is a positive number with megnitude

-1/L
0(1). The mass flow crossing the shaded area is thus pouOG 1/ J pévé dx,

and an overall energy balance gives 0
2 .
3h _ (cE° - q) 35
ax X ox ° (10)
0.0 ,=1/k vt
pu G J pcvc dx
0

We have derived necessary conditions on the velocity profiles and
variation of state on the hypothesis of an inviscid, convection-dominated
core, It is not obvious that there are causal mechanisms for the formsation

of the flow pattern, If it could be shown that the flow is stable in the
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presence of small disturbances, we might have more confidence. A stability
analysis is not attempted here, but it is worth recording the following
physical arguments, If the gas state were to become non-uniform along

a field line, the magnetic forces induce a circulation which increases the
forward velocity of the hotter particles., Then the time of flight for

these particles between adjacent field lines becomes less than that of the
cold, an effect which tends to reduce their enthalpy increase with distance,
or to equalize the state on field lines again., It should be pointed out

that this mechanism could be offset by the increase in power input associated
directly with the higher electrical conductivity of the hotter particles.

2.3 PRESSURE MATCH AT THE STAGNATION POINT

With symmetry about an axis parallel to the free stream, the magnetic
field is parallel and magnetic forces transverse to the shear layer at the
stagnation point. It is the curvature of the arc boundary which allows the
pressure variation of core and outer flow to be matched there,

Fig. 6a shows the vicinity of the forward stagnation point with shear-
layer thickness represented as negligible. Suppose the field line passing

through the stagnation point has radius of curvature R Then the angle

B'
between the field line and the shear layer at a small distance x from the

stagnation point is given by
x(%— + 'l—) .

"B

For the component of the magnetic force along the shear layer, we can take
the magnitudes of o, EB as constant to a first approximation, so that the

pressure gradient in the core is directly proportional to x:
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P . 1,1
- -5 EBx (F+3) . (11)
B
A linear variation of this type is characteristic of the flow at the
stagnation point of a blunt body, so that matching is possible.
Another way of meking the same point is illustrated in Fig. 6b,

-+ o,

which shows isobars in the core for the case of uniform field, RB
If the distance from the stagnation point to an isobar is x along the
boundary, the perpendicular distance is x2/2R, i,e., the difference in
pressure from that at the stagnation point varies like x2 along the

boundary.

2.4 SHEAR-LAYER EQUATIONS

In writing equations for the shear layers we assume that they are
thin enough in comparison to their radius for the effects of curvature
to be negligible (which implies that the approximation is valid only

1/h)

to zero order in G . Taking the co-ordinate system of Fig. 4 with

the x-direction along the layer and y-direction transverse and outward,

the usual boundary-layer approximations yield the following equations for

continuity, longitudinal momentum and energy:

alpu) . 3(pv)

ax Wy 0 (12)
du 3w, 3p_ _ + (g8
el A oy + ox o EBy oy (n ay) ’
3h (o2 4 & (22
pu =+ oV - {cE"} + - (P ay) , (14)

(13)
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where we have retained the term in braces of Eq., (1ll4) since its effect

is unfamiliar although, according to the arguments of Section 2.1, we

expect it to be O(G-l/h).

Suppose that characteristic values of the thermodynamic properties,
po, ho, etc., are those of the core at the stagnation point, We take BO

as the value of the applied field there and non-dimensionalize the equations

in accordance with the order of magnitudes suggested in Section 2.1:

p' = p/p0 » h' = h/h0 sy 0' = o/o0 , B'=B8B /B0 .
. y y

0 . s 0.2 0 0 O2
" =n/n" , ' =q/cE° , p'=(p-p)/pu s
u' = u/uO y V' = (v/uo) G+1/h ,

(15)
x*=x/R , y'= (y/R) G‘..l/)4 R
Q= (OO EER/pO uOhO) G+l/h , uO = (00 EBOR/pO)l/?
2

6 = p%° BB%R3/n0 .

For ease of reference we have repeated the definitions of uo and G, Sub-

stitution from Egs. (15) and Egs. (12), (13) and (1k) gives

aput) | a(p'v) _ o

ox' dy! - ’ (16)
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u'

8 .
+ - ' B! 4 =S (!
ax' p ay' ax' [e} By + ay' (n ay| [ (17)
ah' ah' -1/h . 3_ (0l 3h’
prut ST+ o'V 5ov = (oG ™y (o0 = 4") P (%—-3;7) . (18)

If again we make the usual boundary-layer assumptions in the transverse

momentum equation, we have

ap’ ~1/k
Fr= oz | (9)
-1/h - .
where all terms of order G are dropped except the unfamiliar magnetic

force. Near the stagnation point the angle between field lines and the

arc boundary relates B; to B& by
! = ] 1 )
By x'(1 + l/RB) Bx .

We will therefore have 3p'/dy' = 0(3p'/3x') over a length given by

x' = o(c'l/h)

. However, the stagnation-point solution will be found to
be of the usual type with o'B; a function of y' only to a first approxima-
tion, and it may be shown that departure from 3p'/3x' = const. across the

-1/h) -1/h).

layer is 0(G even when x' = 0(¢
If the magnetic field is non-uniform, we have from the continuity

equation for the field

3B!
=¥ = oY, (20)
Yy .
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and to a first approximation B; is constant across the layer. Then,

1/b

since to order G~ the magnetic force is balanced by the pressure

gradient only in the core, it follows from Egqs. (19), (20) and (17) that
ap' \ -1/h)

2 - L
ax' % Byc + o(c ’

(21)
where the subscript ¢ refers to the core value at a given x.
We derive boundary conditions on the core side from the facts that

) n

-1/
] ay' > O(G )

u' - O(G-l/ *l/h)

as y' »+ - 0(G . (22)
Therefore we take h' as independent of y' when y' + -« =, and the variation

with x follows from the core analysis of Section 2.2, Non-dimensionalizing

Eq. (10), we obtain

' " gt
3h! u(cc a')

_ ¢’ 3S'
ax' ~ x! ax' ° (23)
L ] 1
J pcvc dx
0

On the outer side of the shear layers the usual conditions spply for
approach to an inviscid, isothermal flow,

At this point we can note that, provided the field changes moderately
throughout the arc, 35'/3x' is 0(1), and Eq. (23) shows a to be 0(1l) if
3n!/ox' is 0(1)., Then the electromagnetic-power term in Eq. (18) is

O(G-l/u) and may be dropped,
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To complete the description of the shear layers, property relations
are needed, It is assumed that the Mach number of the free stream is
low enough for pressure differences to be a small fraction of the
absolute pressure so that p', o', etc., may be taken as functions of h'
only, (Note that a low Mach number is sufficient condition for the
neglect of the kinetic energy in the energy equation in spite of the fact

that uo = 0{//(pw/po) u_}. The high velocities are expected in regions

e —————

of low density where hO characterizes values of enthalpy, and we have
2
07,0 2 0,0 0,0
u /h = (uw/hm) (pmhw/p h”), where p b /o b = o(1).)
Then to summarize the complete system of equations and boundary con-

ditions, we have

3p'u’ ap 'v!

ax' A (2h)
] L a ]
u! -gl;-.--* p'v! %—;-1-,- = (o(': -0c') B;,c 3—3-.' (n' 'a%) R (25)
oh! ah! 3 (n' 3h'
o'u' _a?_.,. p'v! T’;'_...a_;’T(.}.;...a_yT) . (26)

o' =p'(h') , o' =0'(n') , no'=rnh') , P=Ph') , (27)

u' >0 , h' o hé y, A5 Y' » = (28)
1
337 (%%7) +0 , h'+h! asy' e (29)
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2.5 ELLIPTIC ASPECTS

Given the free-stream enthalpy and pressure, property relations of
the form (27) can be constructed if we assume a value of h'! (which
essentially implies a choice of ho). If we also assume B&c and 3S'/ox'
are known functions of x' and a is a known constant, the parabolic system
of equations represented by (23) - (29) can in principle be integrated
step by step. We therefore have a family of solutions for the shear layers

characterized by the parameters (some functional)

(Ble » 38'/3x' , o, n') . (30)
These four parameters carry the elliptic aspects of the problem.

The physical significance of the elliptic parameters is as follows,
For a particular shape, the magnetic field (and hence both B'c and
9S'/3x') depends on the current distribution over the whole cross-section
of the arc, while the shape itself must be chosen to match the pressure
distribution for inner and outer flows along the complete boundary. The
significance of a is that, for given field, hO and E, it is a function of
the nose radius R and is therefore closely connected with arc size, The
freedom at present left in the problem by the two unknowns a and h' will
disappear if there are two boundary conditions on the shear layers to be
applied at the rear of the arc, This point will be discussed further in
Section 6, but we can surmise here that the conditions might arise out of

a need to close the internal streamlines.
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To indicate some features of the self field, we take a highly
simplified model in which the arc is a circular cylinder of radius R
with uniformly distributed current density j. The latter assumption is
equivalent to having uniform core properties; the shear-layer contribu-

tion to the self field is o(G"l/h

). Suppose co-ordinates (x¥*, y*) have
their origin at the center of the arc (see Fig. Ta). Then, if A is

the z-component of the vector potential, we have in the interior of the

arc
A= - {Bx*+ 1/k uoj(x*2 + y*9)) (31)

where BO is the imposed field and assumed to be uniform, With this
geometry the self field has no transverse component at the arc boundary,
and the magnetic force along the shear layers is the same as for no self
field., This explains the choice of the applied-field value in the non-
dimensional scheme of Eqs. (15). The result will not be generally true
with realistic shapes and current distributions, but there will be a
tendency for the self field to have a weak influence on B} at the boundary.

Non-dimensionalizing x* and y* with respect to R and rearranging

Eq. (31) we obtain

2BO )2
JR

+ g2 (32)

Yo

vhich shows that the field lines in the column (A = const.) are circular

arcs centered on the axis of symmetry at a distance 2B0/u0 JR upstream of
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the arc center, If 2Bo/u0 JR < 1, the field direction at the stagnation
point becomes opposite to that of the applied field, and there will be
closed field lines within the core, This would clearly be incompatible
with the core theory of Section 2.2, so that the boundary-layer model
cannot be valid with a field reversal. The parameter Mo jR/2BO can be
expressed in a more convenient way by using the drag relation (3).

Eliminating JR, it becomes

C. unap u2
2 _ D 0® "=
N = 3 s , (33)

where N is essentially an Alfvén number for the arc,

We can find the area between two field lines by elementary
trigonometry (see Fig. Tb) and hence derive 3S'/3x' for Eq. (23). Con-
sider two field lines of non-dimensional radii m' and m' + ém' which
intersect the arc boundary at a distance &§x' apart. The angles between
the axis of symmetry and lines joining the intersection points to the arc
center and the field-line center are 6 and ¢. Then the area 65' is
m'¢Sm', But &m' = éx' sin (6 + ¢), and m'/sin 0 = (2Bo/uO jR)/sin (& + ¢)

= 1/sin ¢. Hence

38! ) -1 sin 0
== (QBO/uO JR) sin 8 tan {(QBO/uO JR) - cos 6} i
- 1
= (2B /uy JR) sin x' tan™" N 5
]
(2By/ugdR) = (1 = x'°)
x'2

T T (u, JR/2B,) B x>0 . (34)
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Note that 3S'/9x' =+ 1/2m (2Bo/u0 JR) x' at the critical condition
2B0/uO JR = 1, when there is a neutral point in the field at the stagna-
tion point,

III. THE STAGNATION-POINT SHEAR LAYER

3.1 REDUCTION OF EQUATIONS

Section 2.3 showed that the pressure variation aslong the shear layers
is like that on conventional blunt bodies. It is consistent with this
result to take the velocity u' as initially varying linearly with x'.

It is clear from Egs. (23) and (34) that the departure of hé from the
stagnation-point value (unity) has a quadratic dependence on x' initially.
Hence we assume that properties can be expanded according to the following

power series:

=
[}
"
-~
e
+
e
]
+
e
o
+
<

0 1 2
) (35)
[ - ' '
h h0 + hlx + h2x + teenee
2 L
[ J—- ' '
hc 1+ hlcx + h2cx csesas

etc.

With the elementary description of the field given in Section 2.5, the
transverse magnetic field at the boundary of the arc is that due to the

imposed field only, so that
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B!
Yc

sin x!

X' = x'3/30 4 ... (36)

When the series (35) and (36) are substituted into the shear-layer
equations (23) -« (28), and the lowest order terms in x' are equated, we

obtain

ap .V
00 _
pouo + ay' =0 ’ (37)
au Ju
2 _ 9 0
pouo + povo ay' - (l - OO) + ay| (T\O ay|) 9 (38)
vy =2 = 2 (20 20, (39)
P00 3y" " By’ ‘P 3y’
lc 2pov0c (1 - uo JR/2 BO)
Now make the usual boundary-layer substitution:
= ' = -
so that, from Eq. (37),
daf
L.y (k2)

£ o °
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Then our system of equations for the shear layers at small x' (i.e., near

the stagnation point) becomes

d2f d2f af l-o
T logng =) + £y —5 = (7 - (—) (43)
ag ag“ & o
a (pono EEQ) . EEQ =0 (Lk)
dg ‘P 4t 0 a ’
with boundary conditions taken from Eqs. (28) and (29):
dfo
EE—-+ c , ho +1 as £ > = >
(45)
d2fo
-—2-—+0 ,ho-*h:o as f >+ ©
dg
The initial stages of the core development are given by
(1 -aq,)
b Oc (Lea)

le ~ 2f, (1 - u, JR/2 By)

The resemblance of Eqs. (43) and (45) to those governing natural con-
vection on a flat vertical plate is marked. The term (1 - oo)/oo corres=
ponds to the buoyancy force. (An exact analogy to the incompressible
boundary layer can be formed with an arc next to a cold, solid, flat
boundary if (1 - oo)/po can be taken as a linear function of hj and p n,

as constant, = 1,)
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The most significant term in the equations is the 'driving term'
(1 - oo)/p0 (recall that this represents the effect of the difference
between the pressure gradient and the magnetic forces), as may be surmised
from the above analogy with buoyancy forces, If the term is scaled by a

constant ¢, we find that, given a solution

f, = F(¢) , hy=H(g) for (1 - o) /ey s (L6b)

a scaled solution can be derived as

1/4 L !
f. =¢c / F(cl/ £) , h_ = H(el/‘g) for e(l = a.)/p . (Lé6c)
0 0 0 0
. . 1/2 . . -
while u,. is scaled by ¢ « Thus increasing the level of the driving term

0

increases the velocities along the layer and the entrainment; it reduces
the thickness of the layer., These results are essentially implicit in the

scheme for nondimensionalizing the equations. The characteristic velocity

uo scales with the square root of the magnetic forces, i.e., like 51/2,

=1/l - -
l/o’ « uO 1/2 « ¢ 1/k

vhile the thickness scales like G .

(see Eqs. (15)

for definitions of u’ and G).

In terms of f., ponO/P, the solution of Eq., (4l4) can be written as
£ P
P 0
= [ em [ -5 aea (u7)
0 PoMo Po"o

By analogy with conventional shear layers, we expect fo <1las £+ =« and

fo >1as £ ++ =, i,e,, there is entrainment from either side. Then
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Eq. (47) implies that h0 will asymptote to constant values as § + + =,
and the two constants of integration may be chosen to satisfy the boundary
conditions on ho. For ho = const, we have (1 - oo)/po = const, and

PoNg = const. With these conditions the asymptotic behavior of Eq. (43)

is elementary since it has the form of the Falkner-Skan equations with
diverging integral curves as § > + =, Given fo, (1 - oo)/po,pono as
functions of £, Eq. (43) can in principle be solved to yield dfo/dg with
just two constants of integration., The values of the constants are
determined by the need to choose a solution which does not diverge.
Although these arguments do not take proper account of the coupling between
the equations, they suggest that the boundary conditions (45) are probably
necessary and sufficient. (It might be argued that the behavior of Eq.
(43) is more like that of the Blasius equation on the hot side, where

£ + = », with (1 - co)/p0 + 0 and dfo/dg + 0., The equation when linearized
about the asymptotic state allows solutions of the form dfo/dE = const,
Elimination of this type of solution is equivalent to the elimination of

the diverging solutions with the Falkner-Skan type of equation.)

3.2 APPROXIMATE METHOD OF SOLUTION

Some elementary, but exact, solutions of Egs. (b43) and (LL) can be
found when (1 - oo)/p0 has particular functional dependence on h,. We
shall derive a solution for a case where this dependence approximates reason-
ably to a true property relation.

We start by noting that Eq. (bl) can be integrated directly if f, is

known as a function of ho. Define therefore

fo = 9&/dhy . (L8)
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However g(ho) is not a well defined function on the cold side of the layer;

h. » const, while f

0 varies since dfo/dg + const = ¢Z17p05. Our first

0
approximation is to take po(- ©) > w, which implies that the driving term
falls to zero, or the cold gas can have inertia at zero velocity. Implicit
also in the analysis is the assumption that both ho and fo vary monotonically
with £.

Substituting from Eq. (48) into (kLL), integrating and setting g = O

where dho/dg = 0, we obtain

dho/dg = - Pg/pono ’

(49)
d/dg = - (Pg/pono) a/ahO .
Then Eq. (43) may be written as
2 2
Pg 3 9 Pg 3 g Pg 3dg ) Pg 0 g
PoNo Mg 3y Po"o an PoNo By 3By PoMp an
0 0
2 l -0
p 2 0
+ (B 28)% - . (50)
Po"o 3hy Po

Suppose now that g(ho) is chosen arbitrarily. Then, knowing PoNo and P as

)/p . for which

functions of h, Eq. (50) gives the dependence of (1 - ¢ 0

0
this assumed form of g is exact. If satisfied that the dependence gives

a reasonable approximation to the true property relation, Eqs. (148) and (L9)

with the assumed g(ho) may be used to derive ho(g), fo(g), etc.
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The choice of a suitable function for g is particularly simple in
cases where (1 - oo)/p0 is & symmetric function of {h, - (1 + n')/2},

and we take for a first approximation that P and PoNy 8re constant through

Mo
the layer, Then inspection of Eq. (50) shows that g should also be a
symmetric function of {h0 - (1 + h;)/2}. In what follows assume h' = 0,
which may be thought of as being in accord with the approximation p; = o,
although in principle the state where h = 0 can be chosen arbitrarily

provided property relations are consistent., is retained in the

Po"o
analysis so that a suitable average value can be used in the approximate

results, We then choose a parabolic function for g:
g=ah(l-h) , (51)

where a is a constant which may be adjusted to give the best fit to the

true property relation, Note that g = 0 for hO = 0 and h0 = 1, the hgi

and cold sides of the layer., Substitution of Eq. (51) in (50) gives

l1-0
2
)

h (1 - ho) {2(1 + P) ho(l - ho)

0 L
= 2a (P/pon0 0

o

+ {1 -P) (1 ~ 2h0)2} .

The maximum value, found at h = 1/2, is

0 _a P 2
) = (;;;;) (1 +P)
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and we determine a by making the true and approximate forms of (1 - 00)/00

have the same maximum:

l-0 2p.n
_ 0,1/4 PoMo,1/2 1/4
&= (T)rnax (=—=)""/(1 + P)7" " ny(1 - )
for
(52)
1" % = 8(l i} 00) h.(1-h.) {2h (1 = h)
0 o max O 0 0 0

+(1-p) (1 - 2ho)2/(1 +P)} .

Substituting the form of g given in Egqs. (52) we obtain from Egs.

(49) after some algebra

hO = 1/2 - 1/2 tanh BE ,

1- °0)1/h (290“0)1/2 1

=f = max P (1 + P)

- 17T tenh BE

= %.,1/2 1
po max (1 + P)

l/§—sech2 BE
(53)

where

1- °o)1/h (=By1/2 1

Py mex "2p4ng (1 + P)I7H

8= (

The position of £ = O has been chosen to be the dividing streamline, fo = 0,
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Taking an elementary property relation for the density, Py = l/ho,

we can translate to the physical co-ordinate y, Thus

hy=1- 1/2 exp 2gy' ,

with (54)

2gy' s In 2 ,

The solution (53) emphasizes the importance of the level of the driving
term. Note that the scaling with (1 - oo)/pO max 28rees with the genersal
result of Eqs. (46b) and (46c), Another interesting feature is the factor

(p/2 pono)l/2

vhich appears in B, while B itself is the quantity which controls
the length scale, This indicates that the scale is more directly related

to the thermal diffusivity than to the viscous, Its further dependence on
1/4

Prandtl number is weak, entering only through the factor (1 + P)
Eqs. (54) show that the layer ends at finite y' on the cold side.

This is due to the approximation that Pg * = and is an extreme illustration

of the way in which we expect the scale to shorten as the density increases,

Fig., 8 shows the variation of (1 - 00)/pO with h
T

0 for equilibrium air

when h0 = 8 x 10' Joule/Kg (T = 1330°K), h = 3,01 x lO5 Joule/Kg (T = 300%K).

The driving term has a humped distribution (i), which reaches a maximum near

T

h= L4 x 10' Joule/Kg, the point where the electrical conductivity changes

very rapidly with enthalpy. In comparison is drawn an approximating distribu-

tion (ii) using the formula of Egs. (52) with {(1 - o = 0.4 and

0)/po}max

P = 0,8, There is room for improvement but the approximestion is not
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unreasonable, It is also questionable whether equilibrium values of
properties should be used throughout, in which case (1 - oo)/pO is not
known accurately,

Fig. 9 shows the variation of GRS with h, under equilibrium con-

0
ditions; the curve (i) rises steadily to a maximum value of 12 on the
cold side, For the approximate solution we take a constant value of 2.5.
In Figs. 10a, b, and c profiles of enthalpy, velocity and fo are
drawn for the approximate property relations (ii) of Figs. 8 and 9., Note
that with the temperatures of (i) we should have dfo/di + 0,096 as
£ + + =, lowver than the péak value of velocity shown in Fig. 10b but
perhaps not insignificant, Fig. 11 shows the enthalpy profile again, but
in terms of y'.
Our final analysis of this section aims at giving a more detailed

insight into the forces and momentum balances of the shear layer, If the

equation of motion (43) is integrated once, we obtain

af af daf l-o¢
0 0 0,2 0
p~N + f = J{g(_) - (__.___) }dE R (55)
00 d€2 0 dg ag 00

The sketch of Fig. 12 illustrates the variation of the two terms on the
left-hand side of Eq. (55). The velocity peak (zero shear stress) is
expected in general to be close to the dividing streamline, where fo = 0,
The terms clearly have a tendency to cancel, Then, making the integral on
the right-hand side zero throughout, we would have an indication of

velocity magnitudes with
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ar i -0
O~ /¢ Q)

u, = e
0 dag 2po

. (56)

Eq. (56) underestimates the velocity as £ + » by a factor /2, but differs
from the maximum value given by the approximate solution (53) only by a
factor /{{L + P)/2}. In fact there is a close relation between Eq. (56)
and the assumed form (S51) for g(ho), which underlies the approximate solu-

tions, When P = 1 and PoNp = const, comparison with the energy equation

o
(4Lh) shows that the left-hand side of Eq, (55) is identically zero if fo

is a linear function of h_; this corresponds to a parabolic function for

03
g = J fo dho. In general we might expect that the left-hand side of Eq.
(55) is small, and Eq. (56) gives a reasonable indication of the variation
of velocity with the level of the driving term. (The same technique applied
to the natural-convection boundary layer on a flat vertical plate gives

good results except in the region where velocity falls off rapidly near

the wall,)

The approximate balance of terms suggested sbove has a simple physical
interpretation which is illustrated in Fig, 13, For any control volume of
the type shown the change in shear stress is approximately equal to the
change in momentum flux carried by the transverse flow, while the difference
in magnetic force and pressure is approximately equal to the change of

momentum flux carried by the longitudinal flow,

3.3 NUMERICAL SOLUTION

A program was developed by Mr, H. L., Kaye for the numerical computation
of solutions to the shear-layer equations (43) and (L4). Unfortunately
time prevented us from obtaining more than preliminary results, so we shall

briefly record here only a few points which may be of interest.
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The iterative scheme which was used to solve Eqs. (43) and (u4k) was

based on the following linearization:

i_ (O*n* d fo) v ox d fo _ dfa (2 dfo ) dfa) ) 1 -*08 ’ (57)
dg "Po"o 2 0 4¢? aE at at o¥
*n* dh dh
a ,Po"0 o 0
TS 8wt (58)

where the superscript * refers to values taken from the previous steps in
the iteration, To integrate Eqs. (57) and (58), the differentials were
replaced by three-point differences, while the boundary conditions (L45)
were applied at points where :.lgl was considered large enough to make
subsequent variation negligible,

The original intention was to solve the equations for model gases
which had properties corresponding roughly to air and argon, but which
differed principally in having a sharp cut-off in conductivity (for the
air model at h = kL x 107 Joule/Kg). A prelinminary calculation used property
relations denoted by the curves (iii) in Fig. 8 for (1 - 00)/00 and in
Fig. 9 for PoNo? while P = 0.8 throughout, An interval size of £ ¥ 0.6
was found to be satisfactory with a range approximately #+ 12 (these values
are approximate because of a slight scaling adjustment made later to give
a better fit to the true pono). The solution converged to three-figure
accuracy after twenty iterations (the analytic solution for the curves
(ii) was the first step). Results are shown by the curves marked (iii)

in Figs. 10.
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Agreement between the numerical and analytic solutions is good.
The peak in the curve of (1 - oo)/pO against h0 appears to be too sharp
to cause a rise in the maximum velocity, but velocity profiles do diverge
on the cold side of the layer since the numerical solution now has a
nearly correct boundary condition (here taken that oy * lO2 as £ > + =,
has not made a

i.e.y, u. » 0,1), The degree of variation put into 0o

0 o

great difference to the scale.

Some preliminary solutions were computed also for cases corresponding
to other values of ho. Results suggested that the entrainment parameter
fo(- =) does not vary greatly, and the enthalpy on the dividing stream-
line is always slightly less than half the core value,

IV, SHEAR-LAYER DEVELOPMENT

4,1 SEPARATION MECHANISM

As mentioned in Section 1, there is evidence in the experiments of
Roman and Myersh that vortex streets are formed behind balanced arcs.,
This and the fact that the drag coefficient is of order unity prompt us to
look for mechanisms which might cause the outer part of the shear layer to
separate from the inner in a manner analogous to the separation of the
boundary layer on a bluff body. An obvious step is to study the development
of the shear layers, The stagnation-point solution represented the first
terms of power-series expansions in x' (see Eqs. (35)), and in principle
the development of the layers could be found from the higher-order terms.
However, we find that a complete solution is unnecessary, and indications

of the breask-down of a boundary-layer approach can be found from a general
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analysis of the hot side of the layers, Before giving this analysis in
Section L4,2, we present the following physical arguments to clarify our
proposal for a mechanism of separation.

The position of a fluid particle in the shear layers follows from

the relation:

(AR, A
dx'  u' °

In the vicinity of the stagnation point the relation can be written in

terms of the stagnation-point variables as

%’ﬂ = (ry/x') /(o /0E) .

Substituting from the approximate solution (53) we obtain

dx' _ 2d( 8t )
[ o) (59)

Integrating we obtain
xé/x' = tanh Bf ’
where xé is the value of x' at the point where the fluid particle entered

the shear layer. Substitution in Egqs., (53) gives the variation of enthalpy

with distance travelled in the shear layer as
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ho =1/2 (1 + xé/x') . (60)

Eq. (60) shows how the rate of change of enthalpy with distance decreases
as x'/xé increases., Essentially the loss with time, v’'3h'/3y’, is bounded,
while the particle accelerates continuously so that time spent covering

a unit length decreases, A reduction in the rate of enthalpy change with
distance appears to be a common feature of thermal boundary layers. Thus,
in non-accelerating flow, a decrease in rate of change is found because of
the spread of the layer,

The enthalpy of the core is given to a first approximation by

x'2
lc ’

h0 =1l+h

vwhere h, is the negative quantity of Eq. (k6), i.e., the rate of change
increases with distance, We therefore suggest that the momentum of the
fluid particle may carry it to a region where the enthalpy of the core
has become less than that of the particle. The magnetic force will then be
greater than the pressure gradient., This excess of adverse magnetic force
could cause separation,

There is & possible analogy between the behavior of the shear layers
and buoyant plumes. In the same way that the fluid in the buoyant plume
is driven upwards by the buoyancy force, the fluid in the shear layers is
swept back by the difference between pressure and magnetic forces, With
a stable atmosphere (temperature rising with height), the plume reaches a

limiting level when the temperatures equalize., The feature of the arc
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which corresponds to the temperature variation of the atmosphere is the
falling enthalpy of the core. However, in contrast to a two-dimensional
plume, the arc layer has one cold side and one hot, The question is
vhether heat transfer to the cold side is always sufficient to prevent
the enthalpy of particles in the layer equalizing with the core,

4,2 FLOW REVERSAL

To develop the speculations of the previous section, we next in-
vestigate flow behavior on the core side of the shear layers., Within the
framework of the boundary-layer approximation, conditions on the core side
approach u' = 0, while pévé and hé are functions of x' only. If the
equation of motion (25) and the energy equation (26) are linearized on

the basis of small perturbations about the core state, they give

]
p'V' ﬁl;: Eo_c (hl - hl) B! + ﬂ' 3211' (61)
cc 3y’ ahé c ye c 3y'2 ’
an! 3(h! = h') n' 3°(n’ - n')
plut == = plv! ——t— = £ = . (62)
¢ ax' cc ay' Pc 3y'2

Thus the variation of (hé - h') and of u' is governed by ordinary linear
differential -equations in y', whose coefficients depend on x'., Assume

solutions of the form

u' = ¢ exp {(pévéPc/né) ky'} ,

h! = h' = y exp {(oéVéPc/né) ky'}
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where ¢, ¢y and k mey be functions of x', Substitution in Eqs. (61) and

(62) and elimination of ¢ and y yield

4

2 - v or ol
k (Pck -1) (k =1) = (pcnc/Pcpc

vé“) (30 /3x") B&c (63)
The hot side of the layer corresponds to y' + - «, where p'v' > 0, Hence
Eqs. (61) and (62) will have solutions which asymptote to the core state
if k > 0., At the stagnation point the right-hand side of Eq. (63) is
zero, and its roots are k = l/Pc, k=1, k=0, k = 0. The latter two,
corresponding to solutions u' = const # O, are rejected,

Moving away from the stagnation point, aoé/ax' becomes non-zero and
negative, The typical shape of the curve k2(Pck - 1) (k = 1) as a function
of k is sketched in Fig. 14, and we see that there is a limited range over
which it can have a negative value, If the right-hand side of Eq., (63)
is less than the minimum indicated in Fig., 1li, the roots k of Eq. (63)
must be complex, Such roots represent oscillatory solutions of Eqs. (61)

and (62), This implies that the enthalpy in the layer rises above the

local core value and the flow reverses direction,

The minimum value of k2(Pck - 1) (kx = 1) depends only on the core
Prandtl number and is plotted in Fig. 15, For Pc = 1, the minimum is zero;
for values of P_ close to unity, the minimum is approximately - (Pc - 1)2/hPi.

If we assume to a first approximation that

B' =x' , o

=14+ x'
ye %1e ’

where 96 is a negative quantity, the right-hand side of Eq. (63) becomes
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2 L .4

| . ) ] ! 1

2(pinl/P_ tvei) (1= 0al)

Thus the conductivity of the core cannot change greatly before the
flow reversals appear, and we therefore approximate pé, ete., at the
point of appearance by the stagnation-point values. Then, according to
this theory, reversals occur when

2

o' =1-1/8 fgc (Pc - 1) . (6k4)

c

It is unfortunate that the result is so sensitive to the Prandtl
number, whose value could depend on whether the flow is strictly an
equilibrium one or not. This and the fact that the shear-layer equations
are linearized about a core state which is approximate leave us with little
confidence in the precise prediction of Eq. (6k4). IHowever, we believe
that it does indicate qualitatively that the point at which the enthalpy
rises sbove the core value occurs quite close to the stagnation point, and
the effect probably first makes its appearance at the hot edge of the
shear layers.

In principle the boundary-layer type of solution should not be continued
beyond the point at which flow reversal occurs, The flow no longer has a
parabolic character, and the question is whether the basis for a boundary-
layer approach to the arc problem has been destroyed by the appearance of
reversal close to the stagnation point., We suggest that the qualitative
indications of the theory could remain if flow reversal at the edge does
not have a strong effect on the layer as a whole., Sketches of isotherms

and streamlines corresponding to this view are shown in Figs. 1l6a and b,
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V. INDUCED-EMF AND HALL EFFECTS

The previous discussion has given some basis for a theory of high-
current, low-field arcs, where the emf's induced by the flow and the Hall
effect are negligible, We have taken the most elementary form for Ohm's
law, namely 3 = oE, but strictly the rest-frame electric field for a
fluid particle can differ from E by a quantity of order uOBO in the shear
layers (although of lower order in the core), while the rest-frame field
for an electron differs further by a quantity of order oOEBO/nge. The
latter is a measure of the Hall effect, which can cause electric current
to flow in the plane of variation of the arc ; in turn these currents can
give rise to motion along the arc column, It is the purpose of the present
section to derive conditions under which the neglect of these effects can
be Justified and to give a qualitative indication of their action. How=-
ever, if interested only in high-current, low-field arcs, the reader may
omit this section, noting only that the ratio of the above quantities to E
is measured by M and H of Eqs. (75). If M and H are small we might crudely
expect induced emfs and the Hall effect to be negligible to a first
approximation.

Suppose that we can regard the arc as strictly two-dimensional, the
pressure gradient along the arc being zero, The Hall effect gives rise
H

->
to E, and

<>
H Sy in the plane of variation and Vi perpendicular to it, We

->
retain the symbols E and 3 for the primary components along the column,
while ; refers to velocities in the plane of variation. The complete

form of Ohm's law is
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(65)

-
= (ﬁ +v, xB - T x _ﬁ/ne e + grad pe/ne e) .

We shall assume that uOBO/E and JH/j are at most of order unity, so that,
although there may be significant effects in the shear layers, they are
not sufficient to invalidate our previous order-of-magnitude estimates
of velocities and thickness,
5.1 THE CORE

To start the discussion assume that (i) the self field due to Ek is
negligible and (ii) the state is still constant on field lines in the
core, These assumptions will be found to be consistent with our conclusions.
Due to the low velocities in the core, we still have grad p = 3 X ﬁ’ and
with (ii) above it follows that (3 x g - grad pe)/ne e is irrotational.
These terms can be balanced in Ohm's law by an electric field., Thus the
Hall effect only has a tendency to drive currents 3& with irrotationality
of (3 X ﬁ - grad pe)/ne e in the shear layers. The Hall current in the
core is that required for overall continuity with the shear layers and

1/4

is therefore small, i.e., ] = 0(G™ J). This fact and the low prima
’ ' JHe ry

velocity in the core allow us to neglect the Hall effect and the induced
emf in the primary component of Ohm's law, so that grad p = oﬁ X g, as
before, and assumption (ii) above is Jjustified. Also, since JH/J is at
most order unity in the shear layers only, the self field due to jk is

-1/4

o(G ) less than that due to 3, and assumption (i) is Justified,

The low Hall current in the core implies that the energy input is

still J « E M 0E2. Then, the general results for the behavior of the
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primary flow in the core are unaffected by induced-emf and Hall effects

of 0(1) in the shear layers,

The equations governing the secondary flow in the core are

EH + 3ﬁ xB - (3 x B - grad pe)/ne e=0 |, (66)
curl (EH/O) = curl (;H x B) , (67)
>
div jy =0 , (68)
v,
b=, xB (69)

In Eq. (66) ]H/o is dropped on the grounds that it is O(G'l/h). However,

EH must be strictly irrotational, and taking the curl of the full form
of Ohm's law yields Eq, (67). Since the core is convection dominated,
viscous terms can be dropped from Eq. (69). However, the low magnetic
force of the core is equally effective in inducing secondary flow as the

greater forces in the layers since the residence time in the core is in-

+1/h)

creased by a factor O(G « The magnetic-force term is therefore

G-l/h

retained in Eq. (69). If Ji in the core is o] 3, v

H may change
there by O(uo).
->
From the approximate Ohm's law (66) E, is perpendicular to ﬁ’ and

therefore field lines in the core are lines of constant electric potential,

> > > .
If vy x B is comparable to Eg, Fq. (66) shows that it must be

irrotational, which requires v, constant on the field lines. Then the

H
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equation of motion (69) by analogy with the enthalpy equation must have
> -+
JH x B constant on field lines. The latter condition is incompatible

->
with curl 3h/o= O, and therefore vy X B cannot be strictly irrotational.

However, only a small departure from vy = const on field lines gives

>
sufficient rotation to allow JH xB ¥ const, (To strengthen the argument,

we note that a rotationsal part‘of ;ﬁ X B which is O(VHB) induces currents

O(avHB). The damping time for this rotation, according to Eq. (69), is
2 . . . . . 2 0,.1/k
0(p/0B”). The residence time in the core is much greater if (oB“R/pu )G
. . o eas 0 . . 0 1/h
>> 0(1), i.e., with the definition of u 1in Eq. (2), if (u"B/E) G >> 1,

We shall show later that VH/EH = O(uo/E), so that the rotation is rapidly

-> > >
damped when v, x B is comparable to EH provided we use the assumption

H
1/k

underlying the boundary-layer approach, G >> 1,)

If vy X B is of order JH/O, the induced emf is negligible in Ohm's
law, so that a condition of irrotationality is no longer imposed. Details
of the core flow must be found from the simultaneous soclution of Egs.

(67), (68) and (69).

5.2 THE SHEAR LAYERS

Now consider the shear layers, where in general the full form of
Ohm's law (65) must be used. With the assumption that no induced-emf
term or Hall term is significantly greater than E, there is no change to
our previous conclusion that the electromagnetic energy term in the enthalpy
equation (1k) is negligible, Differences arise in the magnetic-force
term of the momentum equation (13), from the fact that there is a momentum
equation for ; , and the primary motion is coupled to the secondary through

H

the induced-emf terms in Ohm's law,
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Across the shear layers the degree of ionization changes rapidily,
and the electron-pressure gradient can be large although the total
pressure of the gas does not change significantly, If the gas pressure
were to be strictly constant everywhere, P and n_ could be regarded as
functions of temperature only, and (grad pe)/ne e would be irrotational,
i.e., the tendency of electrons to diffuse would be counteracted by an
electric field only. To find what happens with the appropriate 'incom-

ressible' approximation, where the pressure is nearly constant, we write
b ’ D ’

= YD, (70)

where y is the ratio of number of electrons to total number of particles,
Then, relating Pe to its value at the same y but p = po, the stagnation

pressure, we have

ap
P.(vy P) ¥ p (v, p’) + (aTe)y (p -2 ,
¥p (v, p0) + ¥(p = 2°) (11)

where it assumed that (p - po) << po, and y in the last term may be

evaluated at po. Similarly

nelvs ) ¥ ngly, p%) + § (HBEL) (5.5 (72)
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vhere ve have used the fact that n_ = yp/kT. Substituting Egs. (71) and
(72) in the pressure-gradient term and using the fact that P - po is

small, we obtain

0
grad P, . grad pe(y, p)

0
, grad y(p - p)
n e 0 0
e n(y,p) e n(y,p) e

0
(PQ‘ P ) % (a(P/T))y grad (Yo po) ,

n e p
d
~ Erac Pe +  grad (p - )
n e Y n e
€ p=p
L=p)p am (73)
n, e T *9p Erac y

where p = po may be taken as constant across the layer and evaluated from
the pressure gradient in the core, and the remaining thermodynamic quantities
can be evaluated at pressure po. The first term in Eq. (73) being
irrotational gives rise to a large but unimportant electric field. In the
last term grad y is 0(1/8). But the transverse current density is of small
order since the outer edge of the layer is non-conducting, so that the

effect of the y-component of the term must be counteracted by E To

Hy*
maintain irrotationality, the variation of E

O(G.l/hE

Hx across the layer would be

Hy), i,e., the variation could be important if the strong gradient

*
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in y gives rise to large values of EHy' However y varies rapidly with
temperature and only moderately with pressure in partially ionized gases,
It follows that (3 1n T/ 3ln p)Y is small, We therefore take the last

term to be small enough for the variation in E to be negligible across

Hx
the layer, With this assumption, we also have the longitudinal com-
ponent of the term negligible, For our purposes then the important term
in Eq. (73) is the second, which gives rise to currents along the layer,

In developing a suitable form of Ohm's law in the layers to find
the magnetic forces there and the total Hall current crossing the core,
we need expressions only for the x- and z-components since the transverse
current density is assumed to be negligible, We use also the facts that
E and EHx are constant across the layer for irrotationality (the only
term which might invalidate this condition being the last of Eq. (73)
discussed above), that u and JHx in the core are less than the layer values

-1/4

by a factor 0(G ) by continuity, and that By is constant across the

layer. Then

J = O(Jc/oc * uByc - JHxByc/ne e) ,

J
c_
Jux = ollvy, = vy) Byc - (3—_'- %-) Byc/e
ec e

Yc
— L X
' (nec ne) JcByC/e} ' (T4)

In addition to the non-dimensional quantities of Egs. (15) we introduce
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0,0, 0O
g

0 0 0,0
vy = vH/u . né = ne/ne , H=¢B /ne e , M=uB/E , (75)

but we shall not refer y to a standard value since it is already non=-

dimensional and 0(1), Then the equations of motion become

g A4l vyt UL ' ') B' - "u'B°
P ST *o'v 3y " = {(cc -c') Byc Mo'u Byc
+ Mi o'°B!3 (v v!')/n!
ye He H e
2 0'20(':B|2 l - l H20|2B|
- H Sl (S - L) }/(1 4 —tl
n n 0 2
ec ec e n
) du'
+ — ¥ ——
e (0 2y (76)
v} ov! : o!
2 2,°c o'
1! — ty?! e = t(v! - v e IB! (e o e
plut sor o'V {Mo' (v, = vi) Byc H o Byc(“éc né)
Y N
+ H o'c'B'e(—g— - L)+ MH o'2u'B'3/n'}/(l + H 0'2B'2/n'2)
cycn n' yc' e yc' e
ec e
av!
2 (0 o -
* ay’ (n AR (77)

The complexity of Eqs. (76) and (77) is daunting, but we can note

immediately that the additional terms in Eq. (76) do not affect the
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stagnation-point solution. When the series of Eqs. (35) and (36) are
substituted, the first contribution of the additional terms gives the
pover x'3 in comparison to the x'-dependence of (oé - o') B;c.
Physically, the reason is the smallness of the transverse component of

the magnetic field near the stagnation point,

5.3 QUALITATIVE RESULTS

Take the condition H = 0, M # 0, i,e., neglect the Hall effect. We
can consider that the term M o'u'B&i in Eq. (76) is roughly equivalent to
reducing the driving term (oé -0') B}c in Eq. (25), where the induced
enf is neglected. The theory of the stagnation-point layer suggests that,
with lower forcing, velocities are reduced and the layer is thickened
(see Eqs. (47) and (48)). Note that the latter expectation is contrary
to the behavior of Hartmann channel flows,

Now take the condition M = 0, with H # O, but small, so that H° << 1,
i.e., we consider the Hall effect as a small perturbation and neglect the
induced emf, The conditions are sufficient to ensure that the influence
of the Hall effect is of second order of smallness in the longitudinal
equation of motion (76). We have already seen (Section 5.1) that the
Hall effect has no influence on the primary flow in the core, Therefore
the primary flow and distribution of enthalpy are unaffected at this level
of the Hall effect,

Eq. (77) is now merely a linear equation for vﬁ with the form

v av! o'

H 2 c o
p'u' ===+ p'y' == H ¢'B'S (- + %
ox! oy ye n;c nl.
Y av!
-, (! -t
* oy (G- g (g (78)
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Eq. (78) has an obvious resemblance to that for the primary flow in the
shear layers, The driving term is similar in that it is zero at the
edges of layers and peaks within it, However, it falls off more rapidly
towards the cold side, being zero where o' = 0, At low degrees of
ionization, the electrical conductivity is directly proportional to the
number of electrons, resistance to current flow being provided by electron-
atom collisions. At higher degrees of ionization the conductivity be-
comes limited by electron-ion collisions, It follows that c'/né
decreases with increasing ionization, The quantity y/né is inversely
proportional to the total number density of the particles, and increases
with increasing temperature. Hence the driving term is positive unless
the temperature {enthalpy) rises above the core value. Note also that
the Hall current lies predominantly in the x'-direction,

The core equations (67) = (69) are also linear in v!. Because of

H

the linearity, we split vé into two parts:

! = oy *%
Vo= v+ v, (19)
where
v} satisfies Eq. (78) in the layers,
(80)
vﬁ = 0 in the core,
and
avﬁ* av** a avﬁ*
! 1! = ' .
plu' ===+ p'v o 57 (n 37" ) in the layers,
0 (81)
d(v¥* u”)

o

) in the core,
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The conditions of Egs. (80) are roughly analogous to those imposed
on the primary flow. We therefore expect vﬁ to be small in the core,
but to reach values O(H) directed towards positive z in the layers
(assuming the term in braces of Eqs. (80) is 0(1)). The major difference
from the distribution of primary velocity arises from the fact that vﬁ
increases like x'3 in the vicinity of the stagnation point.

Although IZH b4 §| is not distributed through the core like 0E2 - &,
Eqs. (81) are roughly analogous to those governing the enthalpy. Hence
it is to be expected that the magnitude of vﬁ* in the core rises from a
low value at the rear of the arc to a maximum near the stagnation point,
Recalling that the level and direction of 3H in the core is determined
by overall continuity of current, the magnetic force in the second of
Egs., (81) will accelerate fluid particles in the negative z-direction,
and the magnitude will reach O(H), The fact that the Hall current in
the layers falls to zero at the stagnation point implies that the core
value is zero there, and the distribution of vﬁ* will be flatter than
that of the enthalpy.

The picture which emerges from these crude arguments is one in which
the Hall effect causes a secondary flow in the core directed anti-
parallel to the primary current (i.e., from cathode to anode). The
velocity falls off in the shear layers and may even reverse (the contribu-
tion of vﬁ). Sketches of possible current streamlines and contours of
vy = const (arbitrary values) are shown in Figs., 17a and b,

An arc which is slanted with respect to the free stream will differ

from those so far discussed in having a component of the external flow
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parallel to the z-direction, We could account for this by merely super-
imposing a uniform velocity throughout the arc. Depending on the slant,
the effect may counter or reinforce the tendency of the Hall currents

to cause a net flow from cathode to anode. It is interesting to speculate
whether the observed slanting of arcs in some experiments has any
connection with the Hall effect. Since u = O{/(pw/po) uo}, Hall
velocities are significant in comparison to the free stream when H is

only Of (po/pw)}. Note, however, that a fluid particle moves a distance

in the z-direction O(HGl/h

R) when traversing the core; it has to be a
long arc for which the assumption of two-dimensionality can be
Justified,

5.4 THE PARAMETER M

There are some other forms of the induced-emf parameter M of Egs.
(75) which are of some interest. Using the definition of uO in Eq. (2),
the parameter can be written as

2
M= oOBO R/pouo .

2 2
(oOBO R2/n0) (no/pouoR) = o°8° R2/noGl/2 . (82)

This shows that M is equivalent to an interaction parameter for the in-
ternal circulation or to the square of the Hartmann number based on

shear-layer thickness,
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With the drag condition of Eq. (3), Eq. (82) becomes

2
o{ (pm/po) o°8° R/pu_}

=
L}

2
0{(uooouwR) x v (pw/po) x (8° /uopmui)} . (83)

The last part of the expression is the inverse of the square of the
Alfven number, a parameter which controls the level of the self field
(see Eq. (33)). The first part of the expression is a magnetic
Reynolds number, which we can expect to be low. Hence it is unlikely
that the complications of self-field and induced-emf effects will occur

simultaneously.

VI. OVERALL PARAMETERS

6.1 SIMILARITY
For a given gas at a particular state in the free stream, there are

two independent variables for the arc as a whole, e.g., the total current
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I and the imposed field B, (which we suppose uniform). The velocity of
the free stream at which a balance is achieved is then a dependent
variable,

Consider a family of arcs, all having the same shape, pressure and
maximum enthalpy. Suppose also that the enthalpy distribution in the
core is similar, We can show that this family will allow any combination

of the independent variables I and B, if the self field, radiation, in-

0
duced emfs and Hall effect can be neglected.

Firstly, since the magnetic force in the core oE x B depends on
temperature only, the pressure distribution will be similar, a necessary
condition for compatability with an outer inviscid flow over the particular
shape, Secondly, the non-dimensional characteristics of the shear layers
depend only on the thermodynamic state of the core (see the boundary
conditions of Eq. (28)). The layers have similar characteristics along
their length - in particular the position of effective 'separation' is
similar, and the enthalpy of the separated outer part is the same for all
members of the family. The latter feature is compatible with a condition
tﬁat the separated flow be nonconducting. (In this discussion it is
tacitly assumed that the effective separation occurs nearer the rear of
the arc than the point at which the shear-layer enthalpy can rise above
the local core value, Thus the core and layer description applies to the
major part of the arc, and the layers are given to a first aéproximation
by, say, & local-similarity solution to Eqs., (24) - (29).) Then, to
maintain this family, we need only ensure that the entrainment to the

layers and the energy input to the core are such that the enthalpy change
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across the core is the same for all the arcs. This requires only that
the parameter a of Eqs. (15), which according to Eq. (23) controls the
enthalpy variation, should be the same for all., Since a depends on R,
the one degree of freedom left in the family, namely size of arc,

allows its constancy for any values of I and BO.
If the solution to the arc problem is unique, it must be a member

of the above family, provided that the effects of self field, etc., are

negligible. We emphasize that the family has the important properties

of similar shape and similar distribution of the thermodynamic state for

g particular pressure, Pressure variation will cause differences in the

property relations applied to the shear layers and core, but the value
of the enthalpy in the free stream has much less significance since the
characteristics of the shear layers only depend weakly on the density
retio across them,

Because of the similarity in the thermodynamic state of the core, the

arc resistance is proportional to the cross-sectional area (the fraction

of current passing through the layers if O(G-l/h)). Thus
2
I/ER” = const (84)
The drag condition gives
°R/IB. = const (85)
u’ 0 R

if we neglect dependence of the drag coefficient on Reynolds number, an
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assumption consistent with neglecting details of the flow beyond the
effective separation, The scaling lav, a = const, gives when we apply
Eq. (84) to the definition in Eqs. (15)

IT/h/BOl/h R9/h = const (86)

while G is proportional to IB R, Treating I and B, as the independent

0 0

variables we obtain the following laws for the arcs:

R « I7/9}361/9 , U e Il/9Bg/9 p;l/2 ,

(87)

E e 175795219 L/ [M/952/9

0 ’ 0 *
From Eqs. (87) we see that the value of the current is the principle
control of size and the value of the field that of the balance velocity.
The validity of the boundary-layer assumption (Gl/h >> 1) depends more
strongly on the current than the field.

If the proportionalities (87) were universally valid, balanced-arc
data for a given gas and pressure could be reduced to a set of constants.
The neglected effects, e.g., self field, will cause a departure from
these laws. However, when only one effect has to be included, we can
obtain a condition for the arcs to be similar, e.g., that the ratio of

self field to imposed should remeain the same, Thus we must have

uOI/BOR = const, for similarity with self field only, E = const with
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radiation (proportionality of energy input and radiation at a given
state), M of Egs. (75) = const with induced-emf effects and H of Egs.
(75) = const with Hall effect. Given any one condition, we can apply

Eqs. (87), and the similarity laws become

I/Bg = const, if self field only

’

Bg/15= const, if radiation only |,
71 (88)
2 cp s
IB0 = const, if induced emf only ,

B = const.if Hall effect only

Under the influence of any one effect, the similarity may be substituted

back in Eqs. (88) to eliminate partially the devendence on B Thus, for

00

example, with self field only we obtain

3/4

j=s}
0

I x function (I/Bg) s

1/6

u I x function (I/Bg) .

6.2 CHARACTERISTIC MAF

The theory of arcs given in this report has not reached a sufficiently
advanced stage for close quantitative prediction of behavior, However,
we shall attempt to give some indication of the values of parameters by

essentially order-of-magnitude estimates,
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Our first assumption is that the arc is approximately circular
with radius equal to that of the nose, The experimental evidence of
Roman and Myersh suggests this to be untrue; their arcs appeared to
become elliptical with major axis (transverse to the free stream)
reaching as much as 1,8 times that of the minor. However, even at the
highest values of the imposed field, the Alfvén number N, which
estimates the importance of the self field (see Eq. (33)), was not less
than 2. In the discussion of Section 2.5, we suggested that closed
field lines in the core would be inconsistent with a boundary-layer
theory. WNow, for a given current and cross-sectional area, an elliptic
shape with major axis parallel to the applied field lessens the tendency
to form closed field lines. It is therefore possible that the observed
increase in the ratio of major to minor axes with velocity represents
an attempt of the arc to avoid closed field lines as conditions become
more nearly suitable for a boundary-layer approximation, For this
reason, there does not seem to be sufficient experimental evidence for
choosing a shape of arc other than the simplest, i.e,, circular, when
Alfvén numbers are low,

For our second assumption, we suppose that the enthalpy ho at the
stagnation point to be determined by a requirement that the separated
part of the shear layers should be non-conducting. The enthalpy on the
dividing streamline should then have a value at separation such that the
conductivity is effectively cut off, Fluid particles will cool between
the stagnation point and separation, but, for want of a quantitative

theory of the amount of cooling, we apply the condition at the stagnation
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point. Then the analytic solutions of Section 3.2 suggest ho = 2h¥,
where h* is the cut-off enthalpy. We also take h* to be the enthalpy

at the rear of the arc.

Thirdly, we shall, in a similar spirit, merely take the flow across

the core to be constant = pOVO. (A possible improvement would be to

use the value of the entrainment parameter given by the solution of

Section 3.2 and take the mass flow to be fopovo.) Then taking an average

for the electromagnetic power less radiation we write

0,0 n0/2 _ 'K - §°
P 2R 2 :

Again there is room for improvement on the grounds that the strong de~
pendence of é and ¢ on h could maeke the use of an arithmetic mean on the
right-hand side a poor approximation., The form of the energy equation,
however, retains an important feature, namely that E2 must be greater
than éo/oo. Substituting from Egs. (15) and evaluating properties at

h0 = 8 x 107 9

Joule/Kg for air at one atmosphere (&O 210 watts/m3 from

the data of Kivel and Bailey6), we obtain

5

L/UgL/h BS54 52 g 76 x 107 (89)

197 E

For the total current we take I = nR260E, and for the drag condition
pwuiR = IB,

From the above equations a map of arc properties in atmospheric air

has been prepared and is given in Fig, 18, With axes I and BO’ we show
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full lines of constant radius, constent u_ (the associated Mach number is
indicated) and constant Gl/h. Also shown are dashed lines for values of
the self-field parameter N2, the induced emf parameter M, the electric
field E (the non-dimensional quantity measuring the ratio of radiation to
energy input éO is given in parentheses). The Hall parameter H depends
only on the magnetic field, and values are indicated at the side,

In the approximate solution of Section 3,2, the enthalpy in the
stagnation=point layer reaches 90% of its core value at y' = - 3,5 (see
Fig. 10a). From Eqs. (15) we have y = y' RG'l/h. Therefore it is only
in the upper right-hand region of the map that the boundary-~layer approach
might begin to give reasonable results., Induced emf effects are noticeable
there, and the Hall effect could cause significant longitudinal flow,
although it is small enough to have little influence on the primary flow
(see Section 5.3).

If we teke the map at face value in spite of the low values of Gl/h,
it suggests that the self field could have a significant influence up to
values of BO in the region of 0,1 Wb/m2. There is a small region near
LBO = 0,1 Wb/mz, I = 200 A, where the simplest kind of arc can be expected,

i.e., one for which self field, radiation, induced emfs and Hall effect
can be neglected,

It is noteworthy that the principle effect of radiation on the overall
properties is to reduce the variation of the electric field in the lower
right-hand region of the map,

In the experiments of Roman and Myersh, imposed fields up to 5 x lO.3

W'b/m2 and currents in the range 190 to LOO A were used, Their results,



-5T7=-

therefore, cover only a small part of the map, and a part where the
boundary-layer approximation is poor, and self fields are dominant, How=-
ever, as the free stream velocity increased from 10 to 18 m/sec, the

required field at a current of 300 A increased from approximately

3 3 3

1.7 x 1077 to 4.9 x 1073 Wb/mz. The map gives 2,0 x 10~

and 6.4 x 10~
Wb/me. At 400 A and 18 m/sec, the map would predict an arc of slightly
greater diameter than 1.2 cm, while the experimental data suggested an
elliptical shape with major axis 1.12 cm and minor O.Thk em. The high
values of B0 could be consistent with the apparent over-estimate of the
size, and also consistent with an experimental value of E just under
1000 V/m in comparison to the map prediction of just under 600 V/m,
Because of the lower value of E, the map gives higher importance to radia-
tion than was indicated by the experiments,

The following qualitative aspects of the experiments are mirrored
by the map: The balance velocity for given current increases with field
to not quite the half power, and the current decreases slightly with
increasing field for given velocity., The arc size depends principally on
current, increasing with current for given velocity. At high velocities,
the measurements of electric field give velocity increasing with both

electric field and current,

VII, CONCLUSIONS AND RECOMMENDATIONS

T.1 CONCLUSIONS
The principle conclusions to be drawn from this theory are as follows:

(i) There will be an internal circulation within the arc with high
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velocity, of order J(pm/po) times that of the external stream, at least
near the edges of the arc,
(ii) A boundary-layer approach is not strictly valid due to the low

1/h 1/

values of G encountered in practice. Values of G are nearly
sufficient at high, yet practical, fields and currents,

(i1i) A solution of the shear-layer equations can be found for the stagna-
tion point. The main feature is a peaked velocity profile, The solution
does not depend strongly on the external flow,

(iv) Following the shear layers round the edge of the arc, a condition

is approached such th;;.the net force due to pressure gradients and
magnetic forces is ggxerse. This may lead to separation, The start of
the phenomenon is seen close to the stagnation point and at the hot edge

of a layer,

(v) Self fields and radiation are important influences on behavior in

the core of the arc for a wide range of currents and imposed magnetic
e . .

e NS
e ¥

BN

(;5) Closed field lines within the arc are inconsistent with the boundary-
layer approxiﬁ;;;on. It is suggested that a strong self field could be

an important influence on the shape of the arc.

(vii) At high fields, the influence of induced emfs could reduce circula-
tion and thicken *the shear layers,

(viii) At high fields, the Hall effect induces flow along the arc., It is
suggested that a net flow occurs from cathode to anode unless the arc is

slanted with cathode downstream,
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(ix) The overall energy balance depends on the electromagnetic input and
radiation in the core, and on the entrainment to the shear layers. The
latter and therefore the energy balance are only weakly dependent on the
external conditions,
(x) The theory suggests universal scaling laws for arcs in the absence
of self field, radiation, induced emfs and Hall effect. Conditions for
similarity can be derived when only one of these effects is present.
Finally we may ask in what respect is this theory significantly
different from those where motion in the arc is neglected. Since high

1/4

values of G are not obtained in practice, a scale length equal to arc
size rather than shear-layer thickness cannot give a very different answer
for the heat conducted to the outer flow. As in theories which neglect
motion, we associate the enthalpy at the boundary with that giving
effective cut-off in electrical conductivity, However, previously, heat
transfer from the boundary to the outer flow has been assessed from
standard fluid-mechanic data for cylinders. These data are well verified
for small temperature differences, but it is questionable whether they

can be used under arc conditions, If the density is much less at the wall
of a solid cylinder than it is in the outer flow, we might expect velocity
overshoots in accelerated boundary layers (by the arguments of Section

2.1 velocities might reach u0 in our terminology). Then the character of
the boundary layer will be rather similar to the outer part of the shear
layers in the present analysis, It is therefore possible that with

correct heat-transfer data the two approaches would not lead to a great

difference in the quantitative prediction of overall parameters.,

{"{%‘?\\
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T.2 EXPERIMENTAL RECOMMENDATIONS

While it is appreciated that the detailed behavior inside an arc is
not easily investigated, there are some overall or external measurements
which could lead to a better understanding of balanced arcs. A few
points are worthy of special mention:

(i) 1In any experiment designed to check the theory, the two-dimensionality
of the arc must be established by varying the electrode spacing. Note

that longitudinal flows induced by the Hall effect at high fields may

make the condition more difficult to achieve,

(ii) Conditions must be chosen so that buoyancy forces are not significant
(although the theory could be extended to allow for these forces in the
case of a horizontal arc in a vertical flow).

(iii) Although the experiments of Roman and Myersh have given some evidence
to show that the external stream does not enter the arc, further direct
confirmation is desirable -~ possibly using the same technique with observa-
tion of injected particles., Even if the assumption that the arc is a
region of closed streamlines proves correct, it is important to verify a
feature implicit in most attempts at an arc analysis, namely that the
boundary between external and internal flow coincides with cut-off in
electrical conductivity., It is not beyond the bounds of possibility that

a closed, double-vortex pattern in the region of the arc could have stream=
lines which reach outside the area of luminosity. A test for this would

be to inject particles downstream of the arc and to see whether they are

drawn into it.



-61-

(iv) There is a need to make further comparison of the present overall
predictions with existing experimental results, i.e,, with those of moving
arcs, However, it does seem that there is a paucity of data on long arcs
whose condition has been carefully observed - especially ones which are
stationary with respect to the electrodes, There is a need for complete
maps, of the type we haeve tried to derive from the theory, to be made from
experimental data, particularly in regard to dimensions and actual
electric field, as measured by probes within the arc.

If the present hypotheses are not refuted, the following recommenda-
tions might lead to a further advance in theory or more detailed inter-
pretation of the results by allowing a more precise integration of the
core energy equation,

(v) As much information as possible on the shape of the arc is desirable =
especially how the shape is affected as the parameters N2 and G are varied.
The self field outside the arc could be measured, and a direct indication
of field reversal and its influence on arc shape obtained,

(vi) It is a difficult experimental task to find the position of separa-
tion, but an attempt should be made if flow-visualization techniques can

be perfected sufficiently,

7.3 RECOMMENDATIONS FOR FURTHER THEORETICAL WORK

(i) There is a need for a stability analysis of the core (see Section 2.2).
(ii) TFurther questions on stability can be raised. Firstly, what is the
condition for stability of the shear layers (although, having low

effective Reynolds number, there may be sufficient dissipation to damp

1/4

disturbances under practical conditions)? Secondly, as G + 0, the shear
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layers represent a boundary where light fluid is pressed against heavy
by megnetic forces. It is possible that a Rayleigh-Taylor type of in-
stability could exist,
(iii) Further work on the continuation of the shear layers (possibly
using an assumption of local similarity) might lead to a more precise
definition of separation and show whether present ideas on shear-layer
behavior are tenable., The separation point must be established if
theories of arc shape are to be developed., There is perhaps little hope
for a complete description of streamline closure at the rear of the arc,
(iv) Given & better knowledge of arc shape, there will be scope for
further work on magnetic field patterns to determine whether closed field
lines occur,
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Shear layer

Fig. 6a. Field lines near the stagnation point
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Fig. 17a. Possible streamline pattern for the Hall current

Fig. 17b. Possible form of V, contours (arbitrary units)
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