3,679 research outputs found

    FUSE Spectra of the Black Hole Binary LMC X-3

    Full text link
    Far-ultraviolet spectra of LMC X-3 were taken covering photometric phases 0.47 to 0.74 in the 1.7-day orbital period of the black-hole binary (phase zero being superior conjunction of the X-ray source). The continuum is faint and flat, but appears to vary significantly during the observations. Concurrent RXTE/ASM observations show the system was in its most luminous X-ray state during the FUSE observations. The FUV spectrum contains strong terrestrial airglow emission lines, while the only stellar lines clearly present are emissions from the O VI resonance doublet. Their flux does not change significantly during the FUSE observations. These lines are modelled as two asymmetrical profiles, including the local ISM absorptions due to C II and possibly O VI. Velocity variations of O VI emission are consistent with the orbital velocity of the black hole and provide a new constraint on its mass.Comment: 12 pages including 1 table, 4 diagrams To appear in A

    Star formation in galaxies at z~4-5 from the SMUVS survey: a clear starburst/main-sequence bimodality for Halpha emitters on the SFR-M* plane

    Get PDF
    We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of "Halpha excess" sources reaches 37-40% for galaxies with stellar masses log10(M*/Msun) ~ 9-10, and decreases to <20% at log10(M*/Msun) ~ 10.7. At higher stellar masses, however, the trend reverses, although this is likely due to AGN contamination. We derive star formation rates (SFR) and specific SFR (sSFR) from the inferred Halpha equivalent widths (EW) of our "Halpha excess" galaxies. We show, for the first time, that the "Halpha excess" galaxies clearly have a bimodal distribution on the SFR-M* plane: they lie on the main sequence of star formation (with log10(sSFR/yr^{-1})<-8.05) or in a starburst cloud (with log10(sSFR/yr^{-1}) >-7.60). The latter contains ~15% of all the objects in our sample and accounts for >50% of the cosmic SFR density at z=3.9-4.9, for which we derive a robust lower limit of 0.066 Msun yr^{-1} Mpc^{-3}. Finally, we identify an unusual >50sigma overdensity of z=3.9-4.9 galaxies within a 0.20 x 0.20 sq. arcmin region. We conclude that the SMUVS unique combination of area and depth at mid-IR wavelengths provides an unprecedented level of statistics and dynamic range which are fundamental to reveal new aspects of galaxy evolution in the young Universe.Comment: 18 pages, 11 figures, 1 table. Re-submitted to the ApJ, after addressing referee report. Main changes with respect to v1: a new section and a new appendix have been added to investigate further the origin and robustness of the sSFR bimodality. No conclusion change

    The onset of a small-scale turbulent dynamo at low magnetic Prandtl numbers

    Full text link
    We study numerically the dependence of the critical magnetic Reynolds number Rmc for the turbulent small-scale dynamo on the hydrodynamic Reynolds number Re. The turbulence is statistically homogeneous, isotropic, and mirror--symmetric. We are interested in the regime of low magnetic Prandtl number Pm=Rm/Re<1, which is relevant for stellar convective zones, protostellar disks, and laboratory liquid-metal experiments. The two asymptotic possibilities are Rmc->const as Re->infinity (a small-scale dynamo exists at low Pm) or Rmc/Re=Pmc->const as Re->infinity (no small-scale dynamo exists at low Pm). Results obtained in two independent sets of simulations of MHD turbulence using grid and spectral codes are brought together and found to be in quantitative agreement. We find that at currently accessible resolutions, Rmc grows with Re with no sign of approaching a constant limit. We reach the maximum values of Rmc~500 for Re~3000. By comparing simulations with Laplacian viscosity, fourth-, sixth-, and eighth-order hyperviscosity and Smagorinsky large-eddy viscosity, we find that Rmc is not sensitive to the particular form of the viscous cutoff. This work represents a significant extension of the studies previously published by Schekochihin et al. 2004, PRL 92, 054502 and Haugen et al. 2004, PRE, 70, 016308 and the first detailed scan of the numerically accessible part of the stability curve Rmc(Re).Comment: 4 pages, emulateapj aastex, 2 figures; final version as published in ApJL (but with colour figures

    Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    Full text link
    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are possible. For cases when turbulence is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, \epsilon, velocity shear and temperature gradient is proposed; it is argued that the transport is much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC

    Self-similar turbulent dynamo

    Full text link
    The amplification of magnetic fields in a highly conducting fluid is studied numerically. During growth, the magnetic field is spatially intermittent: it does not uniformly fill the volume, but is concentrated in long thin folded structures. Contrary to a commonly held view, intermittency of the folded field does not increase indefinitely throughout the growth stage if diffusion is present. Instead, as we show, the probability-density function (PDF) of the field strength becomes self-similar. The normalized moments increase with magnetic Prandtl number in a powerlike fashion. We argue that the self-similarity is to be expected with a finite flow scale and system size. In the nonlinear saturated state, intermittency is reduced and the PDF is exponential. Parallels are noted with self-similar behavior recently observed for passive-scalar mixing and for map dynamos.Comment: revtex, 4 pages, 5 figures; minor changes to match published versio

    Experimental Signatures of Critically Balanced Turbulence in MAST

    Full text link
    Beam Emission Spectroscopy (BES) measurements of ion-scale density fluctuations in the MAST tokamak are used to show that the turbulence correlation time, the drift time associated with ion temperature or density gradients, the particle (ion) streaming time along the magnetic field and the magnetic drift time are consistently comparable, suggesting a "critically balanced" turbulence determined by the local equilibrium. The resulting scalings of the poloidal and radial correlation lengths are derived and tested. The nonlinear time inferred from the density fluctuations is longer than the other times; its ratio to the correlation time scales as ν∗i−0.8±0.1\nu_{*i}^{-0.8\pm0.1}, where ν∗i=\nu_{*i}= ion collision rate/streaming rate. This is consistent with turbulent decorrelation being controlled by a zonal component, invisible to the BES, with an amplitude exceeding the drift waves' by ∼ν∗i−0.8\sim \nu_{*i}^{-0.8}.Comment: 6 pages, 4 figures, submitted to PR

    On stability of the three-dimensional fixed point in a model with three coupling constants from the ϵ\epsilon expansion: Three-loop results

    Full text link
    The structure of the renormalization-group flows in a model with three quartic coupling constants is studied within the ϵ\epsilon-expansion method up to three-loop order. Twofold degeneracy of the eigenvalue exponents for the three-dimensionally stable fixed point is observed and the possibility for powers in ϵ\sqrt{\epsilon} to appear in the series is investigated. Reliability and effectiveness of the ϵ\epsilon-expansion method for the given model is discussed.Comment: 14 pages, LaTeX, no figures. To be published in Phys. Rev. B, V.57 (1998
    • …
    corecore