172 research outputs found

    A study of the elements copper through uranium in Sirius A: Contributions from STIS and ground-based spectra

    Full text link
    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic mercury-manganese (HgMn) stars. Our primary observational material consists of {\em Hubble Space Telescope} (HSTHST) spectra taken with the Space Telescope Imaging Spectrograph (STIS) in the ASTRAL project. We have also used archival material from the %\citep/{ayr10}. COPERNICUSCOPERNICUS satellite, and from the HSTHST Goddard High-Resolution Spectrograph (GHRS), as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar (CP) stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.Comment: With 6 Figures and 4 Tables; accepted for publication in Ap

    Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease

    Get PDF
    Huntington’s disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington’s disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington’s disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.National Institute of Neurological Disorders and Stroke (U.S.) (Award R01NS085880)William N. and Bernice E. Bumpus Foundation (Early Career Investigator Innovation Award)JPB FoundationEuropean Molecular Biology Organization (Long-term Fellowship

    Z-FIRE: ISM properties of the z = 2.095 COSMOS Cluster

    Get PDF
    We investigate the ISM properties of 13 star-forming galaxies within the z~2 COSMOS cluster. We show that the cluster members have [NII]/Ha and [OIII]/Hb emission-line ratios similar to z~2 field galaxies, yet systematically different emission-line ratios (by ~0.17 dex) from the majority of local star-forming galaxies. We find no statistically significant difference in the [NII]/Ha and [OIII]/Hb line ratios or ISM pressures among the z~2 cluster galaxies and field galaxies at the same redshift. We show that our cluster galaxies have significantly larger ionization parameters (by up to an order of magnitude) than local star-forming galaxies. We hypothesize that these high ionization parameters may be associated with large specific star formation rates (i.e. a large star formation rate per unit stellar mass). If this hypothesis is correct, then this relationship would have important implications for the geometry and/or the mass of stars contained within individual star clusters as a function of redshift.Comment: 11 pages, 5 figures, accepted for publication in Ap

    ZFIRE: The Evolution of the Stellar Mass Tully-Fisher Relation to Redshift 2.0 < Z < 2.5 with MOSFIRE

    Get PDF
    Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass Tully-Fisher relation at 2.0 < z < 2.5. The sample was drawn from a stellar mass limited, Ks-band selected catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Halpha emission line to derive rotational velocities at 2.2X the scale radius of an exponential disk (V2.2). We correct for the blurring effect of a two-dimensional PSF and the fact that the MOSFIRE PSF is better approximated by a Moffat than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully-Fisher relation at 2.0 < z < 2.5 that logV2.2 =(2.18 +/- 0.051)+(0.193 +/- 0.108)(logM/Msun - 10) and infer an evolution of the zeropoint of Delta M/Msun = -0.25 +/- 0.16 dex or Delta M/Msun = -0.39 +/- 0.21 dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit relation logS0.5 =(2.06 +/- 0.032)+(0.211 +/- 0.086)(logM/Msun - 10), and infer an evolution of Delta M/Msun= -0.45 +/- 0.13 dex compared to z < 1.2 if we adopt a fixed slope. We investigate and review various systematics, ranging from PSF effects, projection effects, systematics related to stellar mass derivation, selection biases and slope. We find that discrepancies between the various literature values are reduced when taking these into account. Our observations correspond well with the gradual evolution predicted by semi-analytic models.Comment: 21 pages, 14 figures, 1 appendix. Accepted for publication by Apj, February 28, 201

    ZFIRE: Using Hα\alpha equivalent widths to investigate the in situ initial mass function at z~2

    Get PDF
    We use the ZFIRE survey (http://zfire.swinburne.edu.au) to investigate the high mass slope of the initial mass function (IMF) for a mass-complete (log10(M_*/M_\odot)~9.3) sample of 102 star-forming galaxies at z~2 using their Hα\alpha equivalent widths (Hα\alpha-EW) and rest-frame optical colours. We compare dust-corrected Hα\alpha-EW distributions with predictions of star-formation histories (SFH) from PEGASE.2 and Starburst99 synthetic stellar population models. We find an excess of high Hα\alpha-EW galaxies that are up to 0.3--0.5 dex above the model-predicted Salpeter IMF locus and the Hα\alpha-EW distribution is much broader (10--500 \AA) than can easily be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. Though this discrepancy is somewhat alleviated when it is assumed that there is no relative attenuation difference between stars and nebular lines, the result is robust against observational biases, and no single IMF (i.e. non-Salpeter slope) can reproduce the data. We show using both spectral stacking and Monte Carlo simulations that starbursts cannot explain the EW distribution. We investigate other physical mechanisms including models with variations in stellar rotation, binary star evolution, metallicity, and the IMF upper-mass cutoff. IMF variations and/or highly rotating extreme metal poor stars (Z~0.1Z_\odot) with binary interactions are the most plausible explanations for our data. If the IMF varies, then the highest Hα\alpha-EWs would require very shallow slopes (Γ\Gamma>-1.0) with no one slope able to reproduce the data. Thus, the IMF would have to vary stochastically. We conclude that the stellar populations at z~2 show distinct differences from local populations and there is no simple physical model to explain the large variation in Hα\alpha-EWs at z~2.Comment: Accepted to MNRAS. 43 pages, 27 Figures. Survey website: http://zfire.swinburne.edu.au

    ZFIRE: A KECK/MOSFIRE Spectroscopic Survey of Galaxies in Rich Environments at z~2

    Get PDF
    We present an overview and the first data release of ZFIRE, a spectroscopic redshift survey of star-forming galaxies that utilizes the MOSFIRE instrument on Keck-I to study galaxy properties in rich environments at 1.5<z<2.51.5<z<2.5. ZFIRE measures accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The galaxies are selected from a stellar mass limited sample based on deep near infra-red imaging (KAB<25\mathrm{K_{AB}<25}) and precise photometric redshifts from the ZFOURGE and UKIDSS surveys as well as grism redshifts from 3DHST. Between 2013--2015 ZFIRE has observed the COSMOS and UDS legacy fields over 13 nights and has obtained 211 galaxy redshifts over 1.57<z<2.661.57<z<2.66 from a combination of nebular emission lines (such as \Halpha, \NII, \Hbeta, \OII, \OIII, \SII) observed at 1--2\micron. Based on our medium-band NIR photometry, we are able to spectrophotometrically flux calibrate our spectra to \around10\% accuracy. ZFIRE reaches 5σ5\sigma emission line flux limits of \around3×1018 erg/s/cm2\mathrm{3\times10^{-18}~erg/s/cm^2} with a resolving power of R=3500R=3500 and reaches masses down to \around109^{9}\msol. We confirm that the primary input survey, ZFOURGE, has produced photometric redshifts for star-forming galaxies (including highly attenuated ones) accurate to Δz/(1+zspec)=0.015\Delta z/(1+z\mathrm{_{spec})}=0.015 with 0.7%0.7\% outliers. We measure a slight redshift bias of <0.001<0.001, and we note that the redshift bias tends to be larger at higher masses. We also examine the role of redshift on the derivation of rest-frame colours and stellar population parameters from SED fitting techniques. The ZFIRE survey extends spectroscopically-confirmed z2z\sim 2 samples across a richer range of environments, here we make available the first public release of the data for use by the community.\footnote{\url{http://zfire.swinburne.edu.au}}Comment: Published in ApJ. Data available at http://zfire.swinburne.edu.au, Code for figures at https://github.com/themiyan/zfire_survey, 31 pages, 24 figure

    Large scale structure around a z=2.1 cluster

    Get PDF
    The most prodigious starburst galaxies are absent in massive galaxy clusters today, but their connection with large scale environments is less clear at z2z\gtrsim2. We present a search of large scale structure around a galaxy cluster core at z=2.095z=2.095 using a set of spectroscopically confirmed galaxies. We find that both color-selected star-forming galaxies (SFGs) and dusty star-forming galaxies (DSFGs) show significant overdensities around the z=2.095z=2.095 cluster. A total of 8 DSFGs (including 3 X-ray luminous active galactic nuclei, AGNs) and 34 SFGs are found within a 10 arcmin radius (corresponds to \sim15 cMpc at z2.1z\sim2.1) from the cluster center and within a redshift range of Δz=0.02\Delta z=0.02, which leads to galaxy overdensities of δDSFG12.3\delta_{\rm DSFG}\sim12.3 and δSFG2.8\delta_{\rm SFG}\sim2.8. The cluster core and the extended DSFG- and SFG-rich structure together demonstrate an active cluster formation phase, in which the cluster is accreting a significant amount of material from large scale structure while the more mature core may begin to virialize. Our finding of this DSFG-rich structure, along with a number of other protoclusters with excess DSFGs and AGNs found to date, suggest that the overdensities of these rare sources indeed trace significant mass overdensities. However, it remains puzzling how these intense star formers are triggered concurrently. Although an increased probability of galaxy interactions and/or enhanced gas supply can trigger the excess of DSFGs, our stacking analysis based on 850 μ\mum images and morphological analysis based on rest-frame optical imaging do not show such enhancements of merger fraction and gas content in this structure.Comment: 11 pages, 4 figures, ApJ accepte

    ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4

    Get PDF
    We investigate the properties of galaxies as they shut off star formation over the 4 billion years surrounding peak cosmic star formation. To do this we categorize 7000\sim7000 galaxies from 1<z<41<z<4 into 9090 groups based on the shape of their spectral energy distributions (SEDs) and build composite SEDs with R50R\sim 50 resolution. These composite SEDs show a variety of spectral shapes and also show trends in parameters such as color, mass, star formation rate, and emission line equivalent width. Using emission line equivalent widths and strength of the 4000\AA\ break, D(4000)D(4000), we categorize the composite SEDs into five classes: extreme emission line, star-forming, transitioning, post-starburst, and quiescent galaxies. The transitioning population of galaxies show modest Hα\alpha emission (EWREST40EW_{\rm REST}\sim40\AA) compared to more typical star-forming composite SEDs at log10(M/M)10.5\log_{10}(M/M_\odot)\sim10.5 (EWREST80EW_{\rm REST}\sim80\AA). Together with their smaller sizes (3 kpc vs. 4 kpc) and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological changes initiate before the cessation of star formation. The transitional group shows a strong increase of over one dex in number density from z3z\sim3 to z1z\sim1, similar to the growth in the quiescent population, while post-starburst galaxies become rarer at z1.5z\lesssim1.5. We calculate average quenching timescales of 1.6 Gyr at z1.5z\sim1.5 and 0.9 Gyr at z2.5z\sim2.5 and conclude that a fast quenching mechanism producing post-starbursts dominated the quenching of galaxies at early times, while a slower process has become more common since z2z\sim2.Comment: Accepted for publication in The Astrophysical Journa

    Z-FIRE: ISM PROPERTIES OF THE z=2.095 COSMOS CLUSTER

    Get PDF
    We investigate the ISM properties of 13 star-forming galaxies within the z~ 2 COSMOS cluster. We show that the cluster members have [N ii]/Halpha and [O iii]/Hbeta emission-line ratios similar to z~ 2 field galaxies, yet systematically different emission-line ratios (by ~0.17 dex) from the majority of local star-forming galaxies. We find no statistically significant difference in the [N ii]/Halpha and [O iii]/Hbeta line ratios or ISM pressures among the z~ 2 cluster galaxies and field galaxies at the same redshift. We show that our cluster galaxies have significantly larger ionization parameters (by up to an order of magnitude) than local star-forming galaxies. We hypothesize that these high ionization parameters may be associated with large specific star formation rates (SFRs; i.e., a large SFR per unit stellar mass). If this hypothesis is correct, then this relationship would have important implications for the geometry and/or the mass of stars contained within individual star clusters as a function of redshift
    corecore