1,186 research outputs found

    Protein Ontology: A controlled structured network of protein entities

    Get PDF
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to UniProtKB in that PROā€™s organism-specific classes of proteins encoded by a specific gene correspond to entities documented in UniProtKB entries. PRO relates to the GO in that PROā€™s representations of organism-specific protein complexes are subclasses of the organism-agnostic protein complex terms in the GO Cellular Component Ontology. The past few years have seen growth and changes to the PRO, as well as new points of access to the data and new applications of PRO in immunology and proteomics. Here we describe some of these developments

    Technology-Based Innovations in Child Maltreatment Prevention Programs: Examples from SafeCareĀ®

    Get PDF
    Each year, hundreds of thousands of children in the U.S. are victims of child maltreatment. Experts recommend behavioral, skill-based parent training programs as a strategy for the prevention of child abuse and neglect. These programs can be enhanced using innovative technology strategies. This paper presents a brief history of the use of technology in SafeCareĀ®, a home visiting program shown to prevent child neglect and physical abuse, and highlights current work that takes a technology-based hybrid approach to SafeCare delivery. With this unique approach, the provider brings a tablet computer to each session, and the parent interacts with the software to receive psychoeducation and modeling of target skills. The provider and parent then work together to practice the targeted skills until mastery is achieved. Initial findings from ongoing research of both of these strategies indicate that they show potential for improving engagement and use of positive parenting skills for parents and ease of implementation for providers. Future directions for technology enhancements in SafeCare are also presented

    Marrying Social Media Approaches and Space Flight Control: Eight Years at SpaceOps

    Get PDF
    Three previous SpaceOps papers [1-3] - published in 2010, 2012 (honored by the Conference as a "Best Paper"), and 2014 - have discussed paths to using social media concepts and techniques to enhance space flight controller effectiveness by a) reducing clutter of nonverbal communications (e.g., visual flow with minimal headers and shared content instead of multiple copies), b) moving some voice communication to non-verbal transmission (virtually eliminating "say again" requests because non-verbal comm can be re-read), thus making remaining voice comm easier to focus on, and c) reducing short-term and long-term flight stress on flight control personnel. This paper shows how Marshall Space Flight Center's (MSFC) ISS Payload Operations Integration Center (POIC) is realizing the above goals via the Communications Dashboard (CommDash) software suite deployed in 2017 (including enhancements to the Console Log Tool (CoLT) discussed in earlier papers). Two larger-scope benefits spawned by CommDash evolution are also chronicled: a) emergence of an Agile Software Development (ASD) process adapted to the not-always-nimble environment of government projects, and b) the sprouting of a Human Factors Engineering (HF or HFE) community of practice within MSFC's Payload and Mission Operations Division (PMOD)

    Assessment of smoking status based on cotinine levels in nasal lavage fluid

    Get PDF
    Cotinine is a principal metabolite of nicotine with a substantially longer half-life, and cotinine levels in saliva, urine or serum are widely used to validate self-reported smoking status. The nasal cavity and olfactory system are directly exposed to tobacco smoke in smokers and in non-smokers who live with or work around smokers. However, despite the potential for a direct impact of tobacco smoke on the nasal epithelium and olfactory neurons, no prior studies have assessed cotinine levels in nasal mucus. We sought to determine whether cotinine levels in nasal lavage fluid (NLF) would provide a reasonable estimate of smoke exposure. We assayed cotinine using a competitive immunoassay in NLF from 23 smokers, 10 non-smokers exposed to tobacco smoke (ETS) and 60 non-smokers who did not report smoke exposure. NLF cotinine levels were significantly higher in smokers than in non-smokers, regardless of their exposure to ambient tobacco smoke. Cotinine levels in this small group of exposed non-smokers were not significantly different than those of non-exposed non-smokers. A cutoff of 1 ng/ml provided a sensitivity of 91% and a specificity of 99% for smoking status in this sample. Data were consistent with self-reported smoking status, and a cutoff of 1.0 ng/ml NLF cotinine may be used to classify smoking status. While saliva is the most easily obtained body fluid, NLF can be used to provide an objective and precise indication of smoking status and more directly reflects smoke exposure in the nasal and olfactory mucosa

    Sonic Booms in Atmospheric Turbulence (SonicBAT): The Influence of Turbulence on Shaped Sonic Booms

    Get PDF
    The objectives of the Sonic Booms in Atmospheric Turbulence (SonicBAT) Program were to develop and validate, via research flight experiments under a range of realistic atmospheric conditions, one numeric turbulence model research code and one classic turbulence model research code using traditional N-wave booms in the presence of atmospheric turbulence, and to apply these models to assess the effects of turbulence on the levels of shaped sonic booms predicted from low boom aircraft designs. The SonicBAT program has successfully investigated sonic boom turbulence effects through the execution of flight experiments at two NASA centers, Armstrong Flight Research Center (AFRC) and Kennedy Space Center (KSC), collecting a comprehensive set of acoustic and atmospheric turbulence data that were used to validate the numeric and classic turbulence models developed. The validated codes were incorporated into the PCBoom sonic boom prediction software and used to estimate the effect of turbulence on the levels of shaped sonic booms associated with several low boom aircraft designs. The SonicBAT program was a four year effort that consisted of turbulence model development and refinement throughout the entire period as well as extensive flight test planning that culminated with the two research flight tests being conducted in the second and third years of the program. The SonicBAT team, led by Wyle, includes partners from the Pennsylvania State University, Lockheed Martin, Gulfstream Aerospace, Boeing, Eagle Aeronautics, Technical & Business Systems, and the Laboratory of Fluid Mechanics and Acoustics (France). A number of collaborators, including the Japan Aerospace Exploration Agency, also participated by supporting the experiments with human and equipment resources at their own expense. Three NASA centers, AFRC, Langley Research Center (LaRC), and KSC were essential to the planning and conduct of the experiments. The experiments involved precision flight of either an F-18A or F-18B executing steady, level passes at supersonic airspeeds in a turbulent atmosphere to create sonic boom signatures that had been distorted by turbulence. The flights spanned a range of atmospheric turbulence conditions at NASA Armstrong and Kennedy in order to provide a variety of conditions for code validations. The SonicBAT experiments at both sites were designed to capture simultaneous F-18A or F-18B onboard flight instrumentation data, high fidelity ground based and airborne acoustic data, surface and upper air meteorological data, and additional meteorological data from ultrasonic anemometers and SODARs to determine the local atmospheric turbulence and boundary layer height

    FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD), a leading cause of liver dysfunction, is a metabolic disease that begins with steatosis. Sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate (S1P), have recently received attention for their potential roles in insulin resistance and hepatic steatosis. FTY720/fingolimod, a prodrug for the treatment of multiple sclerosis, is phosphorylated in vivo to its active phosphorylated form by sphingosine kinase 2 and has been shown to interfere with the actions of S1P and to inhibit ceramide biosynthesis. Therefore, in this study we investigated the effects of FTY720 in a diet-induced animal model of NAFLD (DIAMOND) that recapitulates the hallmarks of the human disease. The oral administration of FTY720 to these mice fed a high-fat diet and sugar water improved glucose tolerance and reduced steatosis. In addition to decreasing liver triglycerides, FTY720 also reduced hepatic sphingolipid levels, including ceramides, monohexosylceramides, and sphingomyelins, particularly the C16:0 and C24:1 species, as well as S1P and dihydro-S1P. FTY720 administration decreased diet-induced fatty acid synthase (FASN) expression in DIAMOND mice without affecting other key enzymes in lipogenesis. FTY720 had no effect on the expression of SREBP-1c, which transcriptionally activates FASN. However, in agreement with the notion that the active phosphorylated form of FTY720 is an inhibitor of histone deacetylases, FTY720-P accumulated in the liver, and histone H3K9 acetylation was markedly increased in these mice. Hence, FTY720 might be useful for attenuating FASN expression and triglyceride accumulation associated with steatosis. Keywords: lipogenesis; sphingolipids; sphingosine-1-phosphate

    Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle

    Get PDF
    The Quiet Supersonic Flights 2018 (QSF18) Program was designed to develop tools and methods for demonstration of overland supersonic flight with an acceptable sonic boom, and collect a large dataset of responses from a representative sample of the population. Phase 1 provided the basis for a low amplitude sonic boom testing in six different climate regions that will enable international regulatory agencies to draft a noise-based standard for certifying civilian supersonic overland flight. Phase 2 successfully executed a large scale test in Galveston, Texas, developed well documented data sets, calculated dose response relationships, yielded lessons, and identified future risk reduction activities

    Nasal airflow and odorant transport modeling in patients with chronic rhinosimusitis

    Get PDF
    Poster presentation at Association for Chemoreception Sciences (ACHEMS) in Sarasota Florida April 25-29, 2007. Introduction: Our on-going clinical project aims to quantify the conductive mechanism contributing toolfactory loss in chronic rhinosinusitis (CRS) patients, in addition to other inflammatory causes(see Yee, et al, 200 and Feng, et al, 203). CRS, a common disease affecting 32 millionAmericans annually, is reportedly associated with at least 15% of all olfactory losses. Airwayconstriction as a result of inflammation or the presence of polyps may limit odor access to thereceptor sites and lead to olfactory dysfunction. As yet, the functional impact of various nasalobstructions as sequelae to CRS and their treatment outcomes have not been successfullyindexed by any existing clinical tools, such as acoustic rhinometry, or rhinomanometry.Computational fluid dynamics (CFD) techniques have shown great promises to simulate nasalairflow and predict odorant delivery rates to the olfactory epithelium based on CT scans. In thisreport, we provide additional support for the hypothesis that the CFD calculation is a betterpredictor of olfactory sensitivity among CRS patients than are conventional methods

    Revealing a signaling role of phytosphingosine-1-phosphate in yeast

    Get PDF
    Perturbing metabolic systems of bioactive sphingolipids with genetic approachMultiple types of ā€œomicsā€ data collected from the systemSystems approach for integrating multiple ā€œomicsā€ informationPredicting signal transduction information flow: lipid; TF activation; gene expressio
    • ā€¦
    corecore