157 research outputs found

    Experimentally-Derived Phase Function Approximations in Support of the Orbital Debris Program Office

    Get PDF
    The NASA Orbital Debris Program Office (ODPO) has used various optical assets to acquire photometric data of Earth-orbiting objects to define the orbital debris environment. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA Johnson Space Center emulates illumination conditions seen in space by using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. One of the OMC goals is to improve the size calculation used for optical data by developing an optical-based Size Estimation Model. The current size estimation requires applying a Lambertian phase function, a set albedo value, and range to the observed magnitude. The first step to improving the sampled brightness of laboratory targets is to remove aspect-angle dependencies. Then, the volume of possible object viewing angles is sampled at 21 combinations of azimuth and elevation angles for each solar phase angle. Finally, the acquired images are input into an image processing program that generates approximations for the objects Bidirectional Reflectance Distribution Function (BRDF) and phase function. The BRDF is a radiometric concept that identifies an objects material composition by matching a BRDF approximated with photometric data collected by ground-based telescopes with a BRDF generated experimentally from a known object in the laboratory. This paper presents the initial BRDF and phase function approximations for various fragments/targets acquired in the OMC and how the findings will be incorporated into ODPO models. A Lambertian sphere is used as a baseline for initial size estimation calculations and phase function comparisons. Spacecraft materials and fragments from hypervelocity laboratory impact tests are also presented to compare against the current assumed Lambertian phase function used for size estimates. This paper presents the preliminary phase function analysis and plan forward to utilize a laboratory-based phase function to improve the current optical size estimates using BRDF measurements for a large volume of targets composed of various shapes, sizes, and materials

    Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    Get PDF
    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation

    Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-Based and Telescopic Measurements

    Get PDF
    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage has been subject to two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, the goal being to enable comparison with telescopic data and potential material identification. A LIDAR scan has been completed and a scale model has been created for use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation

    The Updated GEO Population for ORDEM 3.1

    Get PDF
    The limited availability of data for satellite fragmentations and debris in the geosynchronous orbit (GEO) region creates challenges to building accurate models for the orbital debris environment at such altitudes. Updated methods to properly incorporate and extrapolate measurement data have become a cornerstone of the GEO component in the newest version of the NASA Orbital Debris Engineering Model (ORDEM), ORDEM 3.1. For the GEO region, the Space Surveillance Network (SSN) catalog provides coverage down to a limit of approximately 1 m. A more statistically complete representation of the GEO population for smaller objects, which can pose a high risk to operational spacecraft, is thus dependent on dedicated observations by instruments optimized to observe debris smaller than the SSN cataloging threshold. For ORDEM 3.1, optical data from the Michigan Orbital DEbris Survey Telescope (MODEST) provided the input for building the GEO population down to approximately 30 cm (converting absolute magnitude to size). For smaller sizes, the size distribution of debris in the MODEST dataset was extrapolated down to 10 cm, and orbital parameters were estimated based on the orbits of the larger objects. When compared to previous versions of the model, significant improvements were made to the process of building the GEO population in ORDEM 3.1, both in the assessment of fragmentation debris in the data and assignment of orbital elements within the model. A so-called debris ring filter, based on a range of angles between an orbits angular momentum vector and that of the stable Laplace plane, was applied to the data to reduce biases from non- GEO objects, such as objects in a GEO-transfer orbit. In addition, a new approach was implemented to assign noncircular mean motions and eccentricities to the fragmentation debris observed by MODEST because the short observation window (5 min) in GEO limits orbit resolution to a circular orbit assumption for assigning orbital parameters. For ORDEM 3.1, non-circular orbital elements were assigned using relationships that were identified between mean motion and the angle between the orbit plane and the stable Laplace plane, as well as between mean motion and eccentricity, based on breakup clouds modeled by the NASA Standard Breakup Model. This approach has yielded a high-fidelity GEO model that has been validated with data from more recent MODEST observation campaigns

    Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Get PDF
    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources

    Toward Realistic Dynamics of Rotating Orbital Debris, and Implications for Lightcurve Interpretation

    Get PDF
    Optical observations of rotating space debris near GEO contain important information on size, shape, composition, and rotational states, but these aspects are difficult to extract due to data limitations and the high number of degrees of freedom in the modeling process. For tri-axial rigid debris objects created by satellite fragmentations, the most likely initial rotation state has a large component of initial angular velocity directed along the intermediate axis of inertia, leading to large angular reorientations of the body on the timescale of the rotation period. This lends some support to the simplest possible interpretation of light curves -- that they represent sets of random orientations of the objects of study. However, effects of internal friction and solar radiation are likely to cause significant modification of rotation states within a time as short as a few orbital periods. In order to examine the rotational dynamics of debris objects under the influences of these effects, a set of seven first-order coupled equations of motion were assembled in state form: three are Euler equations describing the rates of change of the components of angular velocity in the body frame, and four describe the rates of change of the components of the unit quaternion. Quaternions are a four-dimensional extension of complex numbers that form a seamless, singularity-free representation of body orientation on S3. The Euler equations contain explicit terms describing torque from solar radiation in terms of spherical harmonics, and terms representing effects of a prescribed rate of internal friction. Numerical integrations of these equations of motion are being performed, and results will be presented. Initial tests show that internal friction without solar radiation torque leads to rotation about the maximum principal axis of inertia, as required, and solar radiation torque is expected to lead to spin-up of objects. Because the axis of maximum rotational inertia tends to be roughly coincident with the normal to the largest projected cross-sectional area, internal friction is expected to lead to reduced variation of light curve amplitudes at a given phase angle, but a large dependence of the same on phase angle. At a given phase angle, databases are generated which contain reflected intensities for comprehensive sets of equally-likely orientations, represented as unit quaternions. When projected onto three dimensions (S2) and color-coded by intensity, the set is depicted as points within a solid, semi-transparent unit sphere, within which all possible reflected intensities for an object at a given phase angle may be inspected simultaneously. Rotational sequences are represented by trajectories through the sphere. Databases are generated for each of a set of phase angles separately, forming a comprehensive dataset of reflected intensities spanning all object orientations and solar phase angles. Symmetries in the problem suggest that preferred rotation states are likely, defined relative to the object-sun direction in inertial space and relative to the maximum principal axis of inertia in the body coordinate system. Such rotation states may greatly simplify the problem of light curve interpretation by reducing the number of degrees of freedom in the problem

    Satellite Material Type and Phase Function Determination in Support of Orbital Debris Size Estimation

    Get PDF
    In performing debris surveys of deep-space orbital regions, the considerable volume of the area to be surveyed and the increased orbital altitude suggest optical telescopes as the most efficient survey instruments; but to proceed this way, methodologies for debris object size estimation using only optical tracking and photometric information are needed. Basic photometry theory indicates that size estimation should be possible if satellite albedo and shape are known. One method for estimating albedo is to try to determine the object's material type photometrically, as one can determine the albedos of common satellite materials in the laboratory. Examination of laboratory filter photometry (using Johnson BVRI filters) on a set of satellite material samples indicates that most material types can be separated at the 1-sigma level via B-R versus R-I color differences with a relatively small amount of required resampling, and objects that remain ambiguous can be resolved by B-R versus B-V color differences and solar radiation pressure differences. To estimate shape, a technique advanced by Hall et al. [1], based on phase-brightness density curves and not requiring any a priori knowledge of attitude, has been modified slightly to try to make it more resistant to the specular characteristics of different materials and to reduce the number of samples necessary to make robust shape determinations. Working from a gallery of idealized debris shapes, the modified technique identifies most shapes within this gallery correctly, also with a relatively small amount of resampling. These results are, of course, based on relatively small laboratory investigations and simulated data, and expanded laboratory experimentation and further investigation with in situ survey measurements will be required in order to assess their actual efficacy under survey conditions; but these techniques show sufficient promise to justify this next level of analysis

    Probable Rotation States of Rocket Bodies in Low Earth Orbit

    Get PDF
    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final rotation states of model objects, and these are compared to data derived from physical models of the same objects, tested in the Optical Measurements Center at JSC. Comparison to relevant light curves from actual orbiting rocket bodies are also performed, and diagnostic features of such curves are examined

    Infrared Telescope Facility's Spectrograph Observations of Human-Made Space Objects

    Get PDF
    Presented here are the results of the Infrared Telescope Facility (IRTF) spectral observations of human-made space objects taken from 2006 to 2008. The data collected using the SpeX infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 20 different orbiting objects at or near the geosynchronous (GEO) regime. Four of the objects were controlled spacecraft, seven were non-controlled spacecraft, five were rocket bodies, and the final four were cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials, thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons, silicon, and thermal emission. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels, whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. However, based on the current state of the comparison between the observations and the laboratory data, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris

    Phase Function Determination in Support of Orbital Debris Size Estimation

    Get PDF
    To recover the size of a space debris object from photometric measurements, it is necessary to determine its albedo and basic shape: if the albedo is known, the reflective area can be calculated; and if the shape is known, the shape and area taken together can be used to estimate a characteristic dimension. Albedo is typically determined by inferring the object s material type from filter photometry or spectroscopy and is not the subject of the present study. Object shape, on the other hand, can be revealed from a time-history of the object s brightness response. The most data-rich presentation is a continuous light-curve that records the object s brightness for an entire sensor pass, which could last for tens of minutes to several hours: from this one can see both short-term periodic behavior as well as brightness variations with phase angle. Light-curve interpretation, however, is more art than science and does not lend itself easily to automation; and the collection method, which requires single-object telescope dedication for long periods of time, is not well suited to debris survey conditions. So one is led to investigate how easily an object s brightness phase function, which can be constructed from the more survey-friendly point photometry, can be used to recover object shape. Such a recovery is usually attempted by comparing a phase-function curve constructed from an object s empirical brightness measurements to analytically-derived curves for basic shapes or shape combinations. There are two ways to accomplish this: a simple averaged brightness-versus phase curve assembled from the empirical data, or a more elaborate approach in which one is essentially calculating a brightness PDF for each phase angle bin (a technique explored in unpublished AFRL/RV research and in Ojakangas 2011); in each case the empirical curve is compared to analytical results for shapes of interest. The latter technique promises more discrimination power but requires more data; the former can be assembled in its essentials from fewer measurements but will be less definitive in its assignments. The goal of the present study is to evaluate both techniques under debris survey conditions to determine their relative performance and, additionally, to learn precisely how a survey should be conducted in order to maximize their performance. Because the distendedness of objects has more of an effect than their precise shape in calculating a characteristic dimension, one is interested in the techniques discrimination ability to distinguish between an elongated rectangular prism and a short rectangular prism or cube, or an elongated cylinder from a squat cylinder or sphere. Sensitivity studies using simulated data will be conducted to determine discrimination power for both techniques as a function of amount of data collected and range (and specific region) of phase angles sampled. Empirical GEODSS photometry data for distended objects (dead payloads with solar panels, rocket bodies) and compact objects (cubesats, calibration spheres, squat payloads) will also be used to test this discrimination ability. The result will be a recommended technique and data collection paradigm for debris surveys in order to maximize this type of discrimination
    corecore