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ABSTRACT 

 
 In performing debris surveys of deep-space orbital regions, the considerable volume of the area to be surveyed 
and the increased orbital altitude suggest optical telescopes as the most efficient survey instruments; but to proceed 
this way, methodologies for debris object size estimation using only optical tracking and photometric information 
are needed.  Basic photometry theory indicates that size estimation should be possible if satellite albedo and shape 
are known.  One method for estimating albedo is to try to determine the object’s material type photometrically, as 
one can determine the albedos of common satellite materials in the laboratory.  Examination of laboratory filter 
photometry (using Johnson BVRI filters) on a set of satellite material samples indicates that most material types can 
be separated at the 1-sigma level via B-R versus R-I color differences with a relatively small amount of required 
resampling, and objects that remain ambiguous can be resolved by B-R versus B-V color differences and solar 
radiation pressure differences.  To estimate shape, a technique advanced by Hall et al. [1], based on phase-brightness 
density curves and not requiring any a priori knowledge of attitude, has been modified slightly to try to make it 
more resistant to the specular characteristics of different materials and to reduce the number of samples necessary to 
make robust shape determinations.  Working from a gallery of idealized debris shapes, the modified technique 
identifies most shapes within this gallery correctly, also with a relatively small amount of resampling.  These results 
are, of course, based on relatively small laboratory investigations and simulated data, and expanded laboratory 
experimentation and further investigation with in situ survey measurements will be required in order to assess their 
actual efficacy under survey conditions; but these techniques show sufficient promise to justify this next level of 
analysis. 
 

1.  INTRODUCTION 
 
 The characterization of orbital debris, with an eye to statistical estimation of size and therefore mass of debris 
collections, is one of the principal goals of the NASA Orbital Debris Program Office (ODPO).  Historically, the 
great majority of debris survey and characterization efforts have been directed to the near-Earth (NE) orbit regime, 
formally defined as those objects with an orbital period less than 225 minutes; this is due to the greater satellite and 
debris density in the NE region and thus the greater collision hazard.  Numerous formal NE orbital debris surveys 
have been conducted, both by regular space surveillance network radars and higher-frequency specialty radars; and 
the results of these surveys, together with a model that can be used to estimate object size from radar cross-section 
information [3], have been combined to form a quite comprehensive understanding of the NE debris environment.   
 With the NE debris situation reasonably well studied and understood, more attention can now be directed to the 
deep-space orbital debris situation (satellites with orbital periods greater than 225 minutes).  Because the range-to-
target of these objects is so much greater and the area to be surveyed so much larger, deep-space surveys with radar 
sensors are not practical.  Optical telescopes thus suggest themselves as the survey instruments; and while they are 
better suited to tracking at greater distances (an R2 versus an R4 relationship) and surveying extremely broad areas, 
they introduce many of their own disadvantages:  these sensors have less availability due to lighting and weather 
constraints, they can take angular measurements only, and they report an optical signature that is a function of both 
satellite aspect and illumination geometry (as opposed to a radar cross-section, which for monostatic radars 
[transmitter and receiver are collocated] is affected only by satellite aspect and not by observational configuration).  
Some deep-space optical debris survey work has been conducted [4, 5, 6, 7], and based on findings from the study of 
the NE environment certain projections about DS debris flux and density have been possible [8]; but in general it is 
fair to say that the DS debris situation has been only lightly investigated in comparison to the NE regime.  A major 
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impediment to progress has been the lack of a reliable methodology for determining an estimate of an object’s size 
from its photometric signature, as it is recognized that the common approach of presuming the object to have the 
shape and optical properties of a Lambertian or lunar-propertied sphere, and estimating the object’s size as the 
diameter of such a sphere, can be no better than a first-order estimator [9].  It is the purpose of this paper to outline a 
survey and analysis methodology by which object size can be estimated much more robustly from optical data alone. 
 

2.  PHOTOMETRIC SIZE ESTIMATION BASICS 
 
 The illuminance ratio for a space object can be described by the following equation: 
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in which k is a constant specific to the particular shape, α is the bond albedo of the object, A is the object’s cross-
sectional area, R is the distance from the object to the observer, and f is an attenuation function, specific to the 
particular shape, that is a function of the solar phase angle φ.  One can reformulate the illuminance ratio in terms of 
stellar magnitudes through the conversion 
 

  







E

Er
mag 10log5.2

 (2)
 

 
and create a fully serviceable relationship by fixing the sun as the illumination source 
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When tracking an object with a telescope, one has immediate knowledge of the observed brightness Mv and 
potentially knows something of the color distribution of the photometric return by using either filter photometry or 
spectroscopy.  The range-to-target R, while not directly observed, is usually also known by having tracked the object 
previously and performed an orbit determination (or by making presumptions about the orbit).  The remaining 
variables in the relationship (k, α, and A), as well as the relationship f(φ), are neither known nor directly observable; 
and all but one of the three must be determined in order to use (4) to solve for the remaining quantity.   
 This paper will propose two techniques that, taken together, show promise in being able to determine three of 
these four quantities, allowing the remaining variable (A) to be solved for.  An approach will be outlined for using 
filter photometry and orbit determination to estimate material type, and with material type known one can determine 
the overall bond albedo α and certain key parameters of the phase function f(φ).  Additionally, an approach of 
examining the brightness variation distribution with phase angle will be proposed that will allow an estimation of 
object shape.  Knowledge of the shape will permit the determination of the constant k and the functional form of the 
phase function f(φ).  With these parameters set, one can then solve for the cross-sectional area A; and with this and 
the shape known, one can calculate a characteristic size for the space object.  The laboratory and simulated cases to 
be examined here are, of course, idealized and do not consider the additional difficulties of performing these 
functions with in situ measurements; but if they are successful in the idealized situation, they then can form a basis 
for additional study with extended laboratory work and preliminary survey data. 
 

3.  SATELLITE ALBEDO VIA MATERIAL TYPE AND AGOM 
 

 Determining the bond albedo of a material sample is a reasonably straightforward laboratory exercise:  since the 
shape and area of the sample are known, a phase angle can be chosen for which f(φ) is a known quantity (typically 
unity); and after measuring the illuminance ratio of the object, the only remaining unknown is the albedo (α), which 
can then be solved for.  Additional laboratory illumination variations are required if one wishes to estimate the 



proportion of diffuse to specular photometric return, but the general problem of measuring object albedo in the 
laboratory is not difficult.  A laboratory exercise, therefore, to measure the bond albedos of common satellite 
materials would be straightforward, establishing a mapping between satellite material type and albedo. 
 Satellite characterization investigations that have attempted to estimate satellite material type have generally 
elected to do so with spectroscopy [10, 11], and it is not difficult to understand the reasoning:  spectroscopy gives 
return data over a much broader range and narrowly-binned set of pass-bands, so very precise matches to candidate 
materials are possible due to the materials’ distinctive absorption features over the broad spectral range.  This more 
data-rich approach is, however, considerably less conducive to debris survey conditions:  a minority of candidate 
survey instruments possess spectrometers, spectrometers are more difficult to calibrate, and the taking of even a 
single-observation spectroscopic dataset takes a relatively long time, thus substantially reducing the survey data 
throughput.  While spectroscopy offers superior material properties information, its logistical and data collection 
burdens make it questionable for routine use in debris surveys. 
 Color filter photometry, however, may offer a reasonable substitute for spectroscopy, and one that is much less 
of an encumbrance to survey data throughput.  Filter photometry has sustained multiple investigations of its ability 
to distinguish among closely-spaced satellites [12], to the end that special filter sets have been designed for this very 
application [13].  Color photometry’s improved ability to distinguish among satellites is clearly related to 
differences in the satellites’ material composition rather than satellite positioning or aspect; otherwise, similar 
discrimination powers would be observed using simple open-aperture photometric brightness data; but while this 
ability has been studied extensively in situ, it has resulted in relatively few published laboratory studies.  The NASA 
OPDO Optical Measurement Center, in addition to spectroscopic measurements, has studied spacecraft materials 
with filter photometry using the Johnson/Bessell BVRI filters and recently published both robust average values and 
accompanying uncertainties for sixteen common spacecraft materials [14, 15].  
 

Table 1:  Materials investigated in the laboratory for four-color photometric response (after [14]) 
 

 
 
 Table 1 gives a list of the material types investigated by the study in [14], along with a reference number that 
will appear in certain figures to follow.  Some of the material specimens are near-pristine spacecraft samples from 
the original manufacturers, and others derive from satellite fragmentation experiments and thus represent partial, 
fragmented, and/or pitted exemplars.  The investigation determined that the color-difference paradigm that was most 
revealing was a B-R / R-I comparison, and this is what is shown on the left side of Fig. 1 for the first twelve of the 
sixteen materials examined, with the right side giving the 1-σ measurement uncertainty boxes about each point.  
Because the uncertainty correlation between the two datasets (covariance) is not known, the uncertainty areas are 
represented as simple uncertainty (Bonferroni) boxes.   As one can see, there is quite a bit of overlap among many, 
indeed most, of the boxes, leading one to question whether these different materials can truly be separated based on 
color photometry alone. 

Reference # Material Specimen

1 Intact MLI

2 Layer MLI ‐ Space‐facing ‐ Copper Kapton

3 Layer MLI ‐ Space‐facing ‐ Aluminized Kapton

4 Layer MLI ‐ Spacecraft‐facing ‐ Copper Kapton

5 Layer MLI ‐ Spacecraft‐facing ‐ Aluminized Kapton

6 Impacted MLI:  copper kapton/mylar/beta‐cloth

7 JPL Solar Panel

8 UTL Solar Cell

9 Aluminum alloy

10 Circuit board

11 Flake:  Aluminum + Others

12 Potted Electronics

13 Fragmented Solar Cell

14 Glass‐Fiber‐Reinforced Plastic

15 Carbon‐Fiber‐Reinforced Plastic

16 Green Plastic Potting Material



 
Fig. 1:  Color-difference plot, with and without uncertainty, for 12 of the 16 study materials 

 
 It is important to realize, however, that these 1-σ uncertainties apply only to the estimation of the mean from a 
single sample; if multiple samples (meaning multiple observations) are obtained and the mean or median estimated 
from these multiple samples, then the estimation uncertainty is reduced.  To determine how much multiple sampling 
will reduce these uncertainties, the following resampling investigation was performed.   One hundred thousand 2, 3, 
5, and 10-point samples of each of the R-I and B-R measurements were produced, using the original mean and 
standard deviation from the laboratory measurements as seed data for the random number generation.  In each case, 
the median value was estimated from the 2, 3, 5, and 10-point samples, and the 68th percentile of these estimates was 
taken as a non-parametric proxy for a 1-σ value.  These synthetic 1-σ values were then used to draw the modified 
uncertainty regions shown in Fig. 2.  As one can see, using just two samples instead of one shrinks the uncertainty 
areas substantially; and using five samples produces physical separation of nearly all the uncertainty areas.  A ten-
sample approach produces a separation in every case (except for materials 4 and 9, located in the bottom-right part 
of the left side of Fig. 1, which overlap completely; a different technique for separating these materials will be 
proposed shortly).  This approach does impose the survey requirement of multiple sampling of individual objects, 
and therefore the necessity of performing a state estimate in order to make possible subsequent follow-up; but it 
does appear that with this increased sampling color photometry has the potential to effect material type identification 
reliably. 
 Four of the sixteen materials were omitted from the above analysis because they produced so faint a return in I-
band that an R-I value could not be calculated.  While it is not the most robust of procedures, it does seem 
reasonable to use the circumstance of a low-I-band return as a separation mechanism for placing these four material 
types in their own separate class, to be further separated by a different color indexing procedure.  Fig. 3 shows these 
four materials (numbers 14 and 15 are completely superimposed) on a B-R / B-V color-difference graph on the left 
side and the associated uncertainty areas on the right.  Fig. 4 shows these same areas with median estimates from 
two and five sample resampling, respectively; even the two-sample resampling adequately separates those materials 
that actually have non-identical medians, with the five-sample resampling making the separation that much stronger. 
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Fig. 2:  Change in color-difference uncertainty volumes with number of samples 

 
 

 

 
Fig. 3:  Color-difference plot for four materials with low I-band returns 
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Fig. 4:  Change in color-difference uncertainty volumes with number of samples for materials with low I-
band returns 

 
 At this point, two pairs of materials were not successfully separated by these two different color comparisons:  
materials 4 and 9 from Fig. 1 (MLI versus solar cell fragment) and materials 14 and 15 from Fig. 3 (circuit board 
versus aluminum flake).  Fortunately, there is a third technique available:  the use of a solar radiation pressure 
solution to estimate the area-to-mass ratio of the object.  Solar radiation pressure is the non-conservative force 
resulting from the momentum that the sun’s illumination imparts to the spacecraft, the resulting acceleration of 
which is given by the following relationship [16] 
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in which Ps is the solar radiation pressure in the vicinity of the Earth (usually in units of watts-seconds per cubic 
meter), CR is the radiation pressure coefficient (which essentially defines the absorptivity of the satellite’s 
construction materials), A is the effective area of the satellite’s surface exposed to the solar radiation, M is the 

spacecraft’s mass, rs is the distance to the sun, and sr


 is the unit vector from the satellite to the sun.  In examining 

this equation, one can see in the grouping of CR, A, and M a similar construct to the ballistic coefficient; because in 
the first treatments of the subject [17] the symbol used to represent CR was the Greek letter γ, this ballistic-
coefficient-like quantity is called AGOM (Area-[times]-Gamma-Over-Mass).  This quantity is an estimated 
parameter in most high-fidelity orbit determination algorithms.  If multiple revisits of the object (on the order of 
five) are already required, and if these revisits will span more than one observing session, then a durable estimate of 
AGOM from the OD process is a reasonable expectation.  This procedure does not estimate the area-to-mass ratio 
per se; but since the constant CR almost always has a value between 1 and 2 [16], one can expect AGOM to serve as 
a proxy for area-to-mass ratio at least within that fidelity.  This level of accuracy is likely to be adequate to the task, 
as the dynamic range of the AGOM values associated with common satellite materials can be quite large.  AGOM 
values for solid, dense objects, such as rocket bodies and intact payloads, are typically in the 0.01-0.03 range [18], 
values for MLI are often observed to be in the 1-20 range [19], and intermediate materials can be expected to occupy 
values perhaps in the vicinity of 0.1.  Certain object types, such as those with high area-to-mass ratios, can manifest 
fluctuating and highly variable AGOM values; but it is expected that with modest resampling a reasonable mean 
value  can be computed and used for comparisons. 
 With this expected performance, AGOM can be used to separate the two sets of material pairs that could not be 
distinguished by color photometry alone.  The first set, numbers 4 and 9, constitutes a piece of MLI and piece of 
solar cell; the MLI fragment should have an AGOM value greater than 1, and the solar cell fragment should have an 
AGOM value in the same range as that for a payload, certainly less than 0.1; there should thus be an order of 
magnitude difference between the two AGOM values, making them easily distinguishable.  The second set, numbers 
14 and 15, constitutes a circuit board and an aluminum flake.  The circuit board should have an AGOM value in the 
0.1 range or less, whereas the aluminum flake should have a value much closer to that for the lower end of MLI.  
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While this latter example is less clear-cut, there still should be enough separation between the two values to allow 
separate classification. 
  Of course, these results represent the idealized case of examining satellite materials in the laboratory.  
While some of the material samples were from actual fragmentation experiments, others were manufacturers’ 
pristine material coupons; and all of them were evaluated in a sea-level laboratory rather than a vacuum environment 
emulating the actual environment in which such fragments would be observed.  These laboratory results thus neglect 
the “space reddening” effect in which object colors shift further to the red as time on orbit increases, believed to be 
due to the leaching of atomic oxygen due to the space vacuum.  While some preliminary work has been performed 
to try to characterize this time-varying behavior [20], considerable additional study is needed to produce a color 
transformation function that will allow an equivalence to be established between laboratory and in situ 
measurements.  The present investigation does, however, suggest that this general approach of determining material 
type through color photometric measurements is indeed viable, thus motivating the additional study required to 
develop the needed color transformation function. 
 

4.  SHAPE INFORMATION 
 
 In order the better to understand the production and composition of space debris, a number of laboratory 
satellite collision experiments have been conducted, in which an intact spacecraft is intentionally kinetically 
destroyed and the produced fragments collected and characterized.  These experiments have included the SOCIT 4 
destruction of a completed Transit satellite bus [21], six microsatellite fragmentations conducted by Kyushiu 
University [22], and a rocket body explosion staged by the European Space Operations Center (ESOC).  The 
JSC/ODPO has either sponsored these experiments directly or has collaboratively arranged for the resulting 
fragments to be examined and catalogued. 
 The analysis of these satellite fragments gives some idea of the different fragment shapes that are likely to 
compose the debris population.  The shape analysis of the SOCIT 4 experiment was the most regularized, producing 
a helpful analysis of shape composition by fragment size:  “nuggets” (pitted ellipsoids) predominate from the 
smallest sizes up to 4mm; “flakes” (facets with often one bent or curled edge) constitute the majority from 4mm to 
about 2cm, and above this size the “other” category is used to encapsulate cubes, rectangular prisms, cylinders, 
spheroids, &c.  Given the capabilities of the optical instruments likely to be available for deep-space debris surveys, 
it is unlikely that they will be able to characterize, let alone track, objects smaller than 5cm and probably not much 
smaller than 10cm; so such surveys are likely mostly to encounter the “other” shape categories, which were not 
catalogued expansively in [21] due to that experiment’s focus on the smaller objects.  The investigations in [23] and 
informal surveys of the fragmentation objects in residence at the ODPO indicate that objects > 5cm in size can be 
reasonably assigned to the following shape categories:  1) facets, which can include rectangular prisms; 2) cylinders, 
both squat and elongated; 3) spheroids or “globs,” which can be ellipsoidal but lean towards the spheroidical; and 4) 
needles/wires.  This latter category will need more investigation in the laboratory to determine the best modeling 
approach (long, thin cylinder; long, thin rectangular prism; specular reflector only); but for the present exploration 
of shape determination, the following shapes have been chosen:  two-sided facet, rectangular prism (which, in its 
1x1x1 state, includes the cube), cylinder (both snub and elongated), and icosahedron (as a representative spheroid.). 
 

5.  SHAPE DETERMINATION 
 
 Determining object shape from photometric response has typically been performed with light curves—long 
telescopic dwells (often tens of minutes to hours) on single objects in order to characterize the change in 
photometric intensity with time [24].  This technique promises perhaps the most exact solutions, as light curves bear 
a large amount of data; but their interpretation is exceedingly complex, often intuitive, and not well suited to 
deterministic solution, especially for precessing objects.  Some work has been done on constructing physical models 
to predict the expected attitude of debris objects [25], and when this research has come fully to fruition it may 
reduce the complexity of the light-curve interpretation problem; but for the present it is prudent to examine 
techniques that make use of point photometry, as this may obviate the difficulties of light-curve interpretation and 
additionally afford more survey flexibility. 
 The most promising of such techniques is that of Hall et al. [1], who recommend examining data-density plots 
of an object’s brightness as a function of solar phase angle:  in such plots the x-axis is the solar phase angle, the y-
axis is the object’s brightness, and the out-of-plane dimension (here rendered as a color in a color-intensity plot) is 
the data density, or number of measurements with a particular phase angle – brightness ordered pair.  The key 
insights that engendered this technique are 1) that the brightness versus phase density would have a distinctive 



appearance based on object shape and independent of attitude and 2) the dimmer portion of the density plot would 
additionally be distinctive and, because it is the dim portion, would be largely to entirely free of influence by the 
specular response of the object—thus eliminating the need to make an estimate of object material type.  The analysis 
thus required a paradigm for matching an object’s actual observed photometric response density to those for various 
shapes simulated via Monte Carlo techniques.  Hall et al. proposed for this a Kolmogorov-Smirnov approach 
adapted to matching two-dimensional distributions and demonstrated its effectiveness against a reasonably data-rich 
set of photometric measurements of a NE satellite.   
 Fig. 5 shows these photometric measurement density plots for the shapes called out in Section 4 above, using an 
80% diffuse / 20% specular photometric mixture and the Cook-Torrance specular response model for a gold metal 
material type (a “middle-of-the-road” material for specular response and thus a reasonable choice for a general 
investigation [26]).  Ten thousand randomly-selected sun and observer vectors were chosen for each 1-degree bin in 
phase angle, producing 1.8 million Monte Carlo pairs of vectors with a uniform distribution in phase.  The diffuse 
response alone is shown in the first box of each vertical set, then the specular response alone below that, and then 
the combination of both in the final frame.  The colors indicate the logarithm of the density of the measurements, 
with black/blue indicating the lowest densities and red the highest.  The white line at the bottom of the diffuse 
response curve represents a curve-fitting approach that attempts to detect the “ragged edge” of the dim response and 
then fits a polynomial to this edge, with the winning polynomial fit (up to degree 15) determined by the lowest 
Akaike Information Criterion (AIC) score [27], an information theory technique commonly used to evaluate model 
fitting of data. 
 Hall et al. developed this overall technique for the purposes of satellite characterization; and thus they could 
legitimately confine themselves to a circumscribed number of shapes that were well approximated by Platonic 
solids.  The present project is interested in estimating debris object size and therefore must consider alterations to the 
basic shapes that would affect a size measurement, such as the growing of a cube into an elongated rectangular 
prism and the growing of a “squat” 1x1 cylinder (height equal to diameter) into an elongated cylinder.  Additionally, 
given that the material types of debris objects are likely to vary substantially, it would be helpful to adapt any shape-
recovery technique so as not to require knowledge of material type, either a priori or through observation. 
 To achieve this, one approach has been to try to use the dim edge of the brightness density, represented by the 
white lines shown in Fig. 5, to identify the particular shape.  What is particularly attractive about this approach is 
that, since it operates off of the dim edge of the brightness density, it can be expected to be largely unaffected by 
specular response and thus material type.  These “white line” curve fits do produce different behaviors for some of 
the shapes, such as for the two-sided facet and for the icosahedron; but in other cases they are identical:  the curves 
for the snub and oblong cylinders, cube, and rectangular prism are essentially indistinguishable.  Furthermore, while 
some objects have a reasonably distinct definition of the dim edge up to a certain phase angle (such as the cube up to 
90 degrees in phase and the icosahedron up to about 150 degrees), other shapes, such as the two-sided facet and the 
cone (not shown here explicitly), have a ragged edge over the whole of phase space and thus will require a large 
amount of sampling to try to determine that edge definition robustly.  As such, the approach of fitting the dim end of 
the brightness response is not an immediately promising candidate for the shape-separation needs of the present 
problem. 
 The Hall et al. study’s preliminary trials confined themselves to a single material type and thus executed the 
two-dimensional Kolmogorov-Smirnov distribution comparison technique with this particular variable fixed.  To see 
whether this assumption can be generally applied—namely, whether the specular effects of different materials are 
similar enough that, for the purposes of shape determination, they can be treated as essentially constant—the 
calculations used to produce Fig. 5 were re-run for a single shape (1x1x5 rectangular prism) and ten different 
material types.  There is no known reliable, comprehensive BRDF database of spacecraft materials, so ten material 
types not dissimilar to spacecraft materials and their Cook-Torrance BRDF parameters were taken from the MIT 
BRDF materials database [26], a rigorously-produced repository of BRDF measurement information.  Table 2 
enumerates the particular materials chosen, and Fig. 6 gives three illustrative examples of the different results.  The 
left column of Fig. 6, representing silicon nitride, shows a very weak specular response that essentially leaves the 
diffuse brightness completely unmodified.  The center column, representing metallic blue, shows a stronger specular 
response than the metallic gold used in the initial shape survey of Fig. 5; but while it does alter the overall response 
somewhat from the pure diffuse component, the summed diffuse/specular response still has the overall look-and-feel 
of the diffuse response.  The right column, representing polyurethane, has an extremely broad-lobed specular 
component that produces a summed result that is different from the diffuse response alone—mostly increasing the 
frequency of brightness measurements in the “diffuse” brightness region rather than producing canonical bright 
speculars.  This is a varied set of responses that, in at least some cases, can affect the results in the diffuse region; so 



it is important to select a shape determination approach that will behave robustly in the face of broadly different 
types of specular response.   
 
 

 
Fig. 5a:  Brightness vs phase intensity plots for the two-sided facet and two cylinder types 
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Fig. 5b:  Brightness vs phase intensity plots for the cube, elongated rectangular prism, and icosahedron 

 
 

Table 2:  Material types investigated for specular response- 
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Fig. 6:  1x5 rectangular prism with three very different material properties (left column to right column):  

silicon nitride, metallic blue plastic, and polyurethane 
 
 One way in which this might be done is to examine a relatively narrow band of phase angles, chosen perhaps in 
a region of the phase-brightness intensity plot that is somewhat less perturbed by changes in the material properties 
and subsequent differences in specular reflection.  If response within this band can be considered essentially uniform 
with phase angle, then the distribution to analyze can be reduced from two dimensions (the whole of the brightness-
phase density plot) to one dimension (the response in just this band).  There are many more statistical techniques 
available for analyzing and comparing one-dimensional distributions (essentially histogram analysis); so this 
reduction in dimensionality, while it does in a way exclude much of the brightness information from the shape-
assignment analysis, allows more and varied statistical tools to be brought to the investigation. 
  The logical approach with which to begin is cumulative distribution function (CDF) analysis; essentially 
the integral of a histogram, a CDF is the usual way that histogram information for different distributions is 
compared, and it eliminates the arbitrariness of histogram bin definition.  Comparison of CDFs should give a more 
manageable and, if desired, quantifiable difference set between the distributions for different material types.  In 
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examining the plots of Fig. 5, a good candidate for a phase angle 
wedge seems to be the band of 70 to 75 degrees, so the 
photometry for each of the ten different material types modeled 
for each shape was extracted for that phase angle band and 
formulated into a CDF, the results of which are presented in Fig. 
7.   Each of the six plots maps to one of the shapes in the usual 
order of this paper (two-sided facet, 1x1 cylinder, 5x1 cylinder, 
cube, 1x1x5 rectangular prism, and icosahedron), and each of the 
CDF lines within each plot corresponds to one of the ten material 
types investigated.  In these plots, the x-axis gives photometric 
brightness in Mv and the y-axis cumulative percentage. 
 These plots possess several interesting features, the 
amalgamation of which leads to a promising discrimination 
technique.  First, it is noticed that, while there can be substantial 
variation in the CDF plots below about the 40th percentile point on 
the CDFs, above this point there is a substantial convergence of 
the ten CDF curves; for the icosahedron the convergence is more 
frayed, but it is strong for the other shape types.  So it would seem 
that this region of the distribution—greater than the 40th percentile 
(which is the dimmer side)—exhibits behavior that is mostly 
independent of material type.  Second, the portion of the CDF 
between the 40th and 80th percentiles very much approximates a 
straight line (a bit of a stretch for the two-sided facet, but still the 
behavior is not particularly curved), and the slopes of these 
“linear” portions appear to vary with shape.  To ensure that this is 
not simply a trompe l’œil of the presentation, the data from this 
percentile region were extracted for each shape-material pair, 
ordinary least squares was used to fit a line to these data, and the 
slopes of these lines for the ten material types were averaged for 
each shape.  The results of these calculations are given in Table 3.  
One can observe very large slope differences between shapes that 
have been seen to have very different photometric responses and 
smaller differences between those that have been seen to be 
similar (e.g., 5x1 cylinder and 1x1x5 rectangular prism).  These 
slopes are a good mechanism to distinguish among the five 
shapes, with the possible exception of distinguishing between the 
elongated cylinder and rectangular prism. 
 
 

Table 3:  CDF middle-part slopes associated with different 
shapes 

 

 
 

Shape Average Slope of

Type 40 ‐ 80 Percentile

Two‐sided Facet 20.07

1x1 Cylinder 102.22

5x1 Cylinder 36.91

Cube 89.03

1x1x5 Rectangular Prism 34.07

Icosahedron 666.95

 
Fig.7:  CDF plots of brightness 
distributions in 70-75 degree bin for the 
six shapes used in this study (facet, 1x1 
and 1x5 cylinder, cube, 1x1x5 
rectangular prism, and icosahedron).  
Brightness (in stellar magnitudes) is 
given on x-axis; cumulative percentage 
on y-axis. 



 
 

Fig. 8:  Resampling error regions for estimating CDF slope from limited sampling 
 
 The operative question, of course, is the number of samples required to calculate such a slope with any 
reliability; to determine this, a resampling technique similar to that for the color photometry uncertainty evaluation 
in Section 3 was employed.  Using the Monte Carlo photometry points for each shape, one thousand sets of 10 
samples, 15 samples, 20 samples, &c. up to 100 samples were drawn; and all of these groups of one thousand 



samples were described by the 5th, 32nd, 50th, 68th, and 95th percentiles.  These percentile values can be used to 
approximate 1-sigma and 2-sigma uncertainty regions about the estimated 50th percentile (a proxy for the mean) as a 
function of sample size.  The estimated slope data from Table 3 are combined with these median estimate and 
uncertainty region results and given in Fig. 8.  In this figure, the estimated slope data from Table 3 are shown as 
horizontal lines, each labeled with the shape to which they correspond.  The estimation results are shown as 
envelope regions about the estimated median; the 1-sigma proxy is given in magenta and the extension to a 2-sigma 
proxy in green.  The propriety of the technique is thus determined by how well, and with what degree of sampling, 
the sampling estimate from a shape’s Monte Carlo photometry converges on the actual averaged CDF slope for that 
shape.   
 One can see that the results are extremely encouraging overall.  With one exception, all shapes are properly 
identified within a 1-sigma uncertainty with fewer than 20 samples, and a 2-sigma uncertainty with fewer than 40 
samples.  These resampling requirements strike the authors as reasonably low and certainly within the capabilities of 
debris survey conditions.  With additional sampling, the technique can differentiate between the narrowly-
differentiated shape types of rectangular prism and cylinder (i.e., squat cylinder and cube, and elongated cylinder 
and elongated rectangular prism), but never within a 1-sigma uncertainty.  Since these shape-type pairs are 
essentially identical from the point of view of object size estimation, that a shape identification approach would 
confuse them is not of particular significance, as they would render essentially the same size estimates.  The 
icosahedron is the lone exception—not only is it not properly identified by the technique, it is actually misidentified 
as a squat cylinder or cube.  From a size estimation perspective, this would not be a death-dealing misidentification, 
as the induced error in the size estimation would be relatively small; but it is a misidentification nonetheless.  Proper 
identification of this shape type may require some additional data-taking, such as some tracking at a relatively large 
phase angle (e.g., 110 degrees or so) to determine whether a ragged edge or clear density at that point is observed, 
since the icosahedron will manifest a grouped density with a similar dim point to the 70-75 degree density, as 
opposed to a “ragged edge” situation for the cube.  Of course, if the detections are already at the dim edges of the 
instruments’ capabilities because the object is so dim, it may not be possible to perform this additional experiment; 
so it may be desirable to develop a more robust discrimination technique for the icosahedron case.   
 Despite the promise shown for this technique, one must not become prematurely sanguine about its ease of 
implementation.  The number of different shapes and material types examined were relatively small; so the 
immediate next step in its development is to expand the gallery of shapes and material types to see whether 
discrimination is as strong and clear among larger groups of both.  After this, laboratory verification is needed:  
shape models with different materials need to be constructed and observed in the laboratory and the technique 
deployed (and refined) against these measurements.  Finally, telescope observations of objects with a known shape 
need to be obtained and submitted to this technique to determine how well it functions with actual telescopic data.  
Only at this point would the technique be ready to serve as an integral part of a debris survey. 
  

6.  SURVEY CONDUCT AND PREPARATORY WORK 
 
 If both of the techniques described above (material type determination through color photometry and shape 
identification through phase-versus-brightness data density examination) were fully vetted, how might a deep-space 
debris survey be conducted the best to make use of them?  It would seem that the contemporaneous use of two 
different types of instruments, or perhaps the same instrument in two different modes, would constitute the most 
efficient procedure.  A large-throughput searching sensor, such as the recently-constructed DARPA-sponsored 
Space Surveillance Telescope (SST), can conduct searches of orbital regions of interest multiple times per night, 
taking both optical metric data and open-aperture photometry.  If multiple observations are acquired each evening, 
and especially if a “spiraling” search methodology is employed that revisits each initial search frames on the order 
of a few minutes after the initial exposure, orbit determination should be possible with the angles-only observations, 
which should allow proper association of future observations with their brethren.  As the amount of data increases 
and thus produces enough open-aperture photometry to perform shape estimation, a parallel effort can be conducted 
to collect enough filter photometry on this object to estimate material type.  When enough data have been collected 
to allow both shape and material estimation, the satellite can be placed in an inactive maintenance status—
serendipitous observations from the continuing survey should be sufficient to maintain the object and therefore 
ensure that objects acquired in the future are not confused with this object.  This seems a straightforward procedure 
that would both establish a dim-object DS catalogue and provide object size estimates needed to feed debris models. 
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