16,383 research outputs found
A theory of the electric quadrupole contribution to resonant x-ray scattering: Application to multipole ordering phases in Ce_{1-x}La_{x}B_{6}
We study the electric quadrupole (E2) contribution to resonant x-ray
scattering (RXS). Under the assumption that the rotational invariance is
preserved in the Hamiltonian describing the intermediate state of scattering,
we derive a useful expression for the RXS amplitude. One of the advantages the
derived expression possesses is the full information of the energy dependence,
lacking in all the previous studies using the fast collision approximation. The
expression is also helpful to classify the spectra into multipole order
parameters which are brought about. The expression is suitable to investigate
the RXS spectra in the localized f electron systems. We demonstrate the
usefulness of the formula by calculating the RXS spectra at the Ce L_{2,3}
edges in Ce_{1-x}La_{x}B_{6} on the basis of the formula. We obtain the spectra
as a function of energy in agreement with the experiment of
Ce_{0.7}La_{0.3}B_{6}. Analyzing the azimuthal angle dependence, we find the
sixfold symmetry in the \sigma-\sigma' channel and the threefold onein the
\sigma-\pi' channel not only in the antiferrooctupole (AFO) ordering phase but
also in the antiferroquadrupole (AFQ) ordering phase, which behavior depends
strongly on the domain distribution. The sixfold symmetry in the AFQ phase
arises from the simultaneously induced hexadecapole order. Although the AFO
order is plausible for phase IV in Ce_{1-x}La_{x}B_{6}, the possibility of the
AFQ order may not be ruled out on the basis of azimuthal angle dependence
alone.Comment: 12 pages, 6 figure
Recommended from our members
Improved V I Log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937
New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poor star HD 84937, yielding log epsilon(V) = 3.956 +/- 0.004 (sigma = 0.037) based on 93 V I lines and log epsilon(V) = 1.89 +/- 0.03 (sigma = 0.07) based on nine Vi lines, respectively, using the Holweger-Muller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.NASA NNX10AN93GNSF AST-1211055, AST-1211585Astronom
X-ray absorption branching ratio in actinides: LDA+DMFT approach
To investigate the x-ray absorption (XAS) branching ratio from the core 4d to
valence 5f states, we set up a theoretical framework by using a combination of
density functional theory in the local density approximation and Dynamical Mean
Field Theory (LDA+DMFT), and apply it to several actinides. The results of the
LDA+DMFT reduces to the band limit for itinerant systems and to the atomic
limit for localized f electrons, meaning a spectrum of 5f itinerancy can be
investigated. Our results provides a consistent and unified view of the XAS
branching ratio for all elemental actinides, and is in good overall agreement
with experiments.Comment: 6 pages, 4 figure
A randomised controlled study of an audiovisual patient information intervention on informed consent and recruitment to cancer clinical trials
Recruitment to cancer clinical trials needs to be improved, as does patient knowledge and understanding about clinical trials, in order for patients to make an informed choice about whether or not to take part. Audiovisual patient information (AVPI) has been shown to improve knowledge and understanding in various areas of practice, but there is limited information about its effect in the cancer clinical trial setting, particularly in relation to consent rates. In this study, 173 patients were randomised to receive either the AVPI, in addition to the standard trial-specific written information, or the written information alone. There was no difference in clinical trial recruitment rates between the two groups with similar study entry rates: 72.1% in the AVPI group and 75.9% in the standard information group. The estimated odds ratio for refusal (intervention/no intervention) was 1.19 (95% CI 0.55â2.58, P=0.661). Knowledge scores increased more in the AVPI group compared to the standard group (P=0.0072). The change in anxiety score between the arms was also statistically significant (P=0.011) with anxiety improving in the intervention arm more than in the no intervention arm. Audiovisual patient information was shown to be a useful tool in improving patient knowledge and anxiety, but further work is necessary in relation to its effect on clinical trial recruitment rates
Thermal Phase Variations of WASP-12b: Defying Predictions
[Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b
at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse
depths, thermal and ellipsoidal phase variations at both wavelengths. The large
amplitude phase variations, combined with the planet's previously-measured
day-side spectral energy distribution, is indicative of non-zero Bond albedo
and very poor day-night heat redistribution. The transit depths in the
mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at
4.5 micron, in disagreement with model predictions, irrespective of C/O ratio.
The secondary eclipse depths are consistent with previous studies. We do not
detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties
-estimated via prayer-bead Monte Carlo- keep this non-detection consistent with
model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal
variations that are much stronger than predicted. If interpreted as a geometric
effect due to the planet's elongated shape, these variations imply a 3:2 ratio
for the planet's longest:shortest axes and a relatively bright day-night
terminator. If we instead presume that the 4.5 micron ellipsoidal variations
are due to uncorrected systematic noise and we fix the amplitude of the
variations to zero, the best fit 4.5 micron transit depth becomes commensurate
with the 3.6 micron depth, within the uncertainties. The relative transit
depths are then consistent with a Solar composition and short scale height at
the terminator. Assuming zero ellipsoidal variations also yields a much deeper
4.5 micron eclipse depth, consistent with a Solar composition and modest
temperature inversion. We suggest future observations that could distinguish
between these two scenarios.Comment: 19 pages, 10 figures, ApJ in press. Improved discussion of gravity
brightenin
Regulating Scotland's social landlords: localised resistance to technologies of performance management
Influenced by Foucault's later work on governmentality, this paper explores the regulation of social landlords as a 'technology of performance' concerned with governing the conduct of dispersed welfare agencies and the professionals within them. This is a mode of power that is both voluntary and coercive; it seeks to realise its ambitions not through direct acts of intervention, but by promoting the responsible self-governance of autonomous subjects. Through an analysis of the regulatory framework for social landlords in Scotland, this paper highlights the creation of a performance culture that seeks to mobilise housing organisations to reconcile their local management systems and service provision to external standards, whilst simultaneously wielding punitive interventions for non-compliance. However, housing professionals are not passive in all of this, and indeed, actively challenged and resisted these top-down attempts to govern them at arm's-length
In Situ Characterisation of Permanent Magnetic Quadrupoles for focussing proton beams
High intensity laser driven proton beams are at present receiving much
attention. The reasons for this are many but high on the list is the potential
to produce compact accelerators. However two of the limitations of this
technology is that unlike conventional nuclear RF accelerators lasers produce
diverging beams with an exponential energy distribution. A number of different
approaches have been attempted to monochromise these beams but it has become
obvious that magnetic spectrometer technology developed over many years by
nuclear physicists to transport and focus proton beams could play an important
role for this purpose. This paper deals with the design and characterisation of
a magnetic quadrupole system which will attempt to focus and transport
laser-accelerated proton beams.Comment: 20 pages, 42 figure
- âŠ