207 research outputs found

    Cordilleran Ice-Sheet Growth Fueled Primary Productivity In The Gulf Of Alaska, Northeast Pacific Ocean

    Get PDF
    Fertilization of the ocean by eolian dust and icebergs is an effective mechanism to enhance primary productivity. In particular, high-nutrient, low-chlorophyll (HNLC) areas where phytoplankton growth is critically iron-limited, such as the subarctic Pacific Ocean and the Southern Ocean, are proposed to respond to increases in bioavailable Fe supply with enhanced phytoplankton productivity and carbon export to the seafloor. While Fe-fertilization from dust is widely acknowledged to explain a higher export production during glacial periods in the Southern Ocean, paleoceanographic records supporting links between productivity and eolian dust and/or icebergs in the North Pacific are scarce. By combining independent proxies indicative of ice-sheet dynamics and ocean productivity from a single marine sedimentary record (Integrated Ocean Drilling Program [IODP] Site U1417), we present a comprehensive data set of phytoplankton response to different fertilization mechanisms in the subarctic northeast Pacific between 1.5 and 0.5 Ma, including the Mid Pleistocene Transition. Importantly, the timing of the fertilization events is more strongly controlled by local ice-sheet extent than by glacial-interglacial climate variability. Our findings indicate that fertilization by glacigenic debris results in productivity events in HNLC areas adjacent to ice sheets, and that this mechanism may represent an important, yet rarely considered, driver of phytoplankton growth

    Evidence For Unmonitored Coal Ash Spills In Sutton Lake, North Carolina: Implications For Contamination Of Lake Ecosystems

    Get PDF
    Coal combustion residuals (CCRs, also known as “coal ash”) contain high concentrations of toxic and carcinogenic elements that can pose ecological and human health risks upon their release into the environment. About half of the CCRs that are generated annually in the U.S. are stored in coal ash impoundments and landfills, in most cases adjacent to coal plants and waterways. Leaking of coal ash ponds and CCR spills are major environmental concerns. One factor which may impact the safety of CCRs stored in impoundments and landfills is the storage area's predisposition to flooding. The southeastern U.S., in particular, has a large number of coal ash impoundments located in areas that are vulnerable to flooding. In order to test for the possible presence of CCR solids in lake sediments following Hurricane Florence, we analyzed the magnetic susceptibility, microscopic screening, trace element composition, and strontium isotope ratios of bottom sediments collected in 2015 and in 2018 from Sutton Lake in eastern North Carolina and compared them to a reference lake. The results suggest multiple, apparently previously unmonitored, CCR spills into Sutton Lake from adjacent CCR storage sites. The enrichment of metals in Sutton Lake sediments, particularly those with known ecological impact such as As, Se, Cu, Sb, Ni, Cd, V, and Tl, was similar to or even higher than those in stream sediments impacted by the Tennessee Valley Authority (TVA) in Kingston, Tennessee, and the Dan River, North Carolina coal ash spills, and exceeded ecological screening standards for sediments. High levels of contaminants were also found in leachates extracted from Sutton Lake sediments and co-occurring pore water, reflecting their mobilization to the ambient environment. These findings highlight the risks of large-scale unmonitored spills of coal ash solids from storage facilities following major storm events and contamination of nearby water resources throughout the southeastern U.S

    Dynamics Of The Late Plio-Pleistocene West Antarctic Ice Sheet Documented In Subglacial Diamictites, AND-1B Drill Core

    Get PDF
    Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio– Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201–212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38–49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55–68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites inAND-1B demonstrates that Pliocene glacial intervals were warmer than in the Pleistocene when polar ice sheets grew from local inland ice to regional ice streams

    Magnetic Susceptibility As A Proxy For Coal Ash Pollution Within Riverbed Sediments In A Watershed With Complex Geology (Southeastern USA)

    Get PDF
    A study of near surface sediments from the Dan River (southeastern USA) was conducted to assess the use of magnetic properties as proxies of coal ash after a recent spill. The watershed geology is diverse and potentially contributes magnetic minerals to riverbed sediment from diabase dikes in the Dan River Triassic Basin and from granitic gneiss outside the basin. Coal ash is heterogeneous, including aluminosilicate spheres, amorphous particles and carbonaceous rods and lacy particles. The magnetic fraction of ash from the failed storage pond is up to 17 wt% and is mostly composed of black spheres with maghemite and magnetite. Ash was detected in riverbed sediment from quiet water settings such as inside of meander bends, the confluence of tributary streams and near islands between the spill site and 20 miles downstream in the Schoolfield Reservoir, Danville, VA. The strong magnetic signal is detected above background in riverbed samples and is strongly positively correlated with total ash; elevated low field magnetic susceptibility (x LF) is evident in samples with = 12% ash content. Anhysteretic remanent magnetization and hysteresis parameters delineate native sediment, ash-bearing sediment, and diabase dikes. Between 20 and 70 miles downstream of the spill site, ash concentrations were either buried or too low due to dilution with native sediment to be detected with x LF in riverbed samples

    Mid-Pleistocene Climate Transition Drives Net Mass Loss From Rapidly Uplifting St. Elias Mountains, Alaska

    Get PDF
    Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification ( 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic ( 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent in- creases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale

    Magnetic Susceptibility Measurements To Detect Coal Fly Ash From The Kingston Tennessee Spill In Watts Bar Reservoir

    Get PDF
    An estimated 229 000 m3 of coal fly ash remains in the river system after dredging to clean-up the 2008Tennessee Valley Authority (TVA) spill in Kingston, Tennessee. The ash is heterogeneous with clear,orange and black spheres and non-spherical amorphous particles. Combustion produces iron oxides thatallow low field magnetic susceptibility (cLF) and percent frequency dependent susceptibility (cFD%) to beused to discriminate between coal fly ash and sediments native to the watershed. Riverbed samples withcLF greater than 3.0 _ 10_6 m3/kg, have greater than 15% ash measured by optical point counting. cLF ispositively correlated with total ash, allowing ash detection in riverbed sediments and at depth in cores.The ratio of ash sphere composition is altered by river transport introducing variability in cLF.Measurement of cLF is inexpensive, non-destructive, and a reliable analytical tool for monitoring the fateof coal ash in this fluvial environmen

    Organic Amendments to Enhance Herbicide Biodegradation in Contaminated Soils

    Get PDF
    Pesticide contamination of soil and groundwater at agricultural chemical distribution sites is a widespread problem in the USA. Alternatives to land-farming or solid waste disposal include biostimulation and phytoremediation. This research investigated the ability of compost, corn stalks, corn fermentation byproduct, peat, manure, and sawdust at rates of 0.5% and 5% (w/w) to stimulate biodegradation of atrazine [6-chloro-N-ethyl-Nâ€Č-(1-methyethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], and trifluralin [2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine] added as a mixture to soil. Initial concentrations were 175±42 mg atrazine kg–1 soil, 182±25 mg metolachlor kg–1 soil, and 165±23 mg trifluralin kg–1soil. After amendment addition, 30% of the atrazine, 33% of the metolachlor, and 44% of the trifluralin was degraded over 245 days, which included 63 days\u27 aging prior to amendment additions. Atrazine degradation was enhanced by 0.5% manure, 5% peat, and 5% cornstalk amendments compared to nonamended soils. Metolachlor degradation was enhanced by all amendments at the 5% level, except for compost and peat. Amendments had no effect on trifluralin degradation. The 5% addition of compost, manure, and cornstalks resulted in significant increases in bacterial populations and dehydrogenase activity. A second experiment compared the persistence of atrazine, metolachlor, and trifluralin applied in a mixture to their persistence in soil individually. A combined average of 123 mg atrazine kg–1 remained in soil treated with the three-herbicide mixture compared to 31 mg atrazine kg–1 remaining in soil treated with atrazine only. Atrazine mineralization and atrazine-degrading microorganisms were suppressed by high concentrations of metolachlor, but not by trifluralin

    Undergraduate Accounts of the Impact of Lockdown on Their Self-Managed Reflective Development of Graduate Abilities

    Get PDF
    This account is mostly written by students in the first year of their discipline-based study of civil engineering. It features their self-managed development of graduate abilities in the second semester of an undergraduate Irish course in problem-based civil engineering. The principal abilities were creativity, problem-solving, presentations and teamwork. The case-study paper concentrates upon four students’ reports and reflections on their experiences concerning their second (partially locked-down) semester. Their accounts complement the review of the early weeks of their first semester experience, that has already been published elsewhere. They are joined by the tutor who was an external facilitator of their early drafts of reviews. He suggested the compilation and structure of this paper, and has assisted with the assembly of the condensed individual contributions

    Orbital and Suborbital‐Scale Variations of Productivity and Sea Surface Conditions in the Gulf of Alaska During the Past 54,000 Years: Impact of Iron Fertilization by Icebergs and Meltwater

    Get PDF
    As a high-nutrient and low-chlorophyll region, the modern Gulf of Alaska (GoA) is strongly impacted by the limitation of iron. Paleostudies along the Alaskan slope have mainly focused on reconstructing environmental conditions over the past 18 ka. Based on micropaleontological, biogeochemical, and sedimentological parameters, we explore a sediment record covering the past 54 ka at Integrated Ocean Drilling Program Site U1419 to understand the impact of orbital- and suborbital-scale climate variability on productivity and sea-surface conditions. Close to the Cordilleran Ice Sheet (CIS), Site U1419 is ideally located to elucidate how the evolution of a large ice mass and glacial processes affected orbital- and suborbital-scale changes in nutrients (e.g., iron) supply. Meltwater discharge from the northern CIS impacted sea surface dynamics of GoA coastal waters. The corresponding increases in bulk biogenic concentrations during Marine Isotope Stage (MIS) 3 and MIS 2 (54–17 ka) suggests a direct impact from iron fertilization. The lack of a consistent relationship between productivity and SST suggests that cooling of surface waters was not the dominant control on primary producers. The inundation of the subaerially exposed continental shelf during the last deglacial (17–10 ka) warming could have served as a major micronutrient source, accounting for a deglacial peak in production. Low productivity after the last deglaciation suggests reduced iron availability, which we link to reduced meltwater inputs from smaller ice masses onshore. Our multiproxy approach reveals a more comprehensive picture of late Quaternary productivity variations compared to earlier studies along the Alaskan margin. The impact of tidewater glaciers and meltwater discharge on past marine productivity and nutrient budget dynamics of high-latitude coastal regions is discussed

    Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures

    Get PDF
    The initiation and evolution of the Cordilleran Ice Sheet are relatively poorly constrained. International Ocean Discovery Program (IODP) Expedition 341 recovered marine sediments at Site U1417 in the Gulf of Alaska (GOA). Here we present alkenone-derived sea surface temperature (SST) analyses alongside ice-rafted debris (IRD), terrigenous, and marine organic matter inputs to the GOA through the late Pliocene and early Pleistocene. The first IRD contribution from tidewater glaciers in southwest Alaska is recorded at 2.9 Ma, indicating that the Cordilleran Ice Sheet extent increased in the late Pliocene. A higher occurrence of IRD and higher sedimentation rates in the GOA during the early Pleistocene, at 2.5 Ma, occur in synchrony with SSTs warming on the order of 1 degrees C relative to the Pliocene. All records show a high degree of variability in the early Pleistocene, indicating highly efficient ocean-climate-ice interactions through warm SST-ocean evaporation-orographic precipitation-ice growth mechanisms. A climatic shift towards ocean circulation in the subarctic Pacific similar to the pattern observed during negative Pacific Decadal Oscillation (PDO) conditions today occurs with the development of more extensive Cordilleran glaciation and may have played a role through increased moisture supply to the subarctic Pacific. The drop in atmospheric CO2 concentrations since 2.8 Ma is suggested as one of the main forcing mechanisms driving the Cordilleran glaciation
    • 

    corecore